

ASX Announcement (ASX : OBM)

01 August 2022

MINERAL RESOURCE AND RESERVE STATEMENT

Mineral Resource of 2.0Moz and Ore Reserve of 276koz to underpin organic growth opportunities

HIGHLIGHTS

- > Mineral Resource of 2.0Moz remains stable despite mining depletion
- > Significant growth in Iguana Mineral Resource following 2021 resource drilling
- Gold price used for Ore Reserve calculations reduced from A\$2,200/oz to A\$1,850/oz to increase the quality of Ore Reserves as the Company focuses on higher-margin ounces that add value to the Ore Reserve base
- Updated Ore Reserves of 276koz at ~2g/t underpins more than four years of production at the Company's current run rate
- Drilling has commenced at Riverina to focus on extensions to the deposit's higher-grade Mineral Resource and convert more ounces to reserves
- Further drilling planned in FY23 will continue OBM's strategy of growing higher-margin Mineral Resources at Siberia, Riverina and Callion
- > Exploration programs to start later in FY23 across all projects to add to the Mineral Resource base

Ora Banda Mining Limited (ASX:OBM) ("Ora Banda", "Company") is pleased to announce updated estimates for its Mineral Resources and Ore Reserves as at June 30 2022, outlined in the following tables.

Total Mineral Resource Estimate:

DPOIECT	MEA	SURED	INDI	CATED	INFE	RRED	то	TAL MATE	RIAL
PROJECT	('000t)	(g/t Au)	('000oz.)						
Davyhurst Project	900	1.9	17,900	2.8	6,300	3.1	25,200	2.5	2,020

Total JORC (2012) Proved and Probable Ore Reserve for six key deposits (Riverina, Waihi, Callion, Missouri, Sand King and Iguana open pits) all forming part of the Davyhurst Gold Project ("DGP" or "Project") of:

PROJECT	PROVED		PRO	BABLE	TOTAL MATERIAL		
PROJECT	('000t)	(g/t Au)	('000t)	(g/t Au)	('000t)	(g/t Au)	('000oz.)
Mining Projects	190	2.0	3,860	2.0	3,970	2.0	257
Stockpiles	610	1.0	-	-	610	1.0	19
TOTAL	800	1.2	3,860	2.0	4,580	1.9	276

The Ore Reserve inventories form a robust foundation to build a profitable growth strategy for the company. The reserves were estimated at a gold price of \$A 1,850/oz which provides excellent cashflow opportunities compared to previous calculations done at a gold price of \$2,200/oz. Cost increases have been taken into account for the Ore Reserve conversion which reflect changes in the prevailing market conditions for the Western Australian mining industry. Mineral Resource updates and mining depletions are factored in alongside operational efficiencies to form a robust business case on which to build a strong future for Ora Banda. The Mineral Resource of 2.0Moz also provides extensive future organic growth opportunities for the Company.

Ora Banda Mining's Chief Executive Officer, Luke Creagh, commented:

"Our change to the gold price assumption for our reserve calculation down to \$1,850 per ounce fundamentally improves the economics on how we assess our projects," Mr Creagh said.

"This change improves the quality and value of our current reserve base as well as directing our focus to highermargin ounces - both from a production perspective as well as directing our drill programs.

"I am very upbeat about increasing our resource and reserve base given the outstanding opportunities the Company has with over 120 km of mineralised trends that are substantially under-explored.

"This year we will be committing to a systematic, disciplined and continuous approach to our exploration pathway and we look forward to informing the market in due course."

Table 1: Ore Reserves by deposit

PROJECT AREA	DEPOSIT	PROVED		PRO	BABLE	TOTAL MATERIAL		
		('000t)	(g/t Au)	('000t)	(g/t Au)	('000t)	(g/t Au)	('000oz.)
Siberia	Missouri	-	-	1,090	2.2	1,090	2.2	78
Siberia	Sand King	10	2.4	400	2.2	410	2.2	29
Riverina	Riverina	80	1.9	10	1.9	90	1.9	5
Davyhurst	Waihi	-	-	340	2.3	340	2.3	24
Callion	Callion	-	-	140	3.0	140	3.0	13
Lady Ida	Iguana	100	2.0	1,800	1.7	1,910	1.7	107
Sub-Total		190	2.0	3,860	2.0	3,970	2.0	257
Stockpiles	Siberia / Riverina	610	1.0			610	1.0	19
TOTAL		800	1.2	3,860	2.0	4,580	1.9	276

Notes:

- 1. The table contains rounding adjustments to reflect accuracy and do not total exactly.
- 2. This Ore Reserve was estimated from practical mining envelopes and the application of modifying factors for mining dilution and ore loss.
- 3. For the open pit Ore Reserve, dilution skins were applied to the undiluted Mineral Resource estimate. Dilution was included at the background grade estimated into each model. The dilution grade ranged from zero to 0.4 g/t with the global average being 0.2 g/t. The in-pit dilution is estimated to average 41% at Sand King, 65% at Missouri, 59% at Riverina, 30% at Waihi, 59% at Callion and 42% at Iguana. The global dilution for the project was estimated to be 47%.
- 4. The Inferred Mineral Resource within the mining envelope was considered as waste.

5. The open pit Ore Reserve was estimated using incremental cut-off grades specific to location and weathering classification. They range from 0.8 g/t to 1.0 g/t Au and are based on a gold price of A\$1,850 per ounce. Costs used in the cut-off grade calculation allow for ore transport, processing, site overheads and selling costs as well as process recovery specific to the location and domain. Process recoveries range from 85% to 96%.

6. The Ore Reserve is inclusive of surface stockpiles above the relevant incremental cut-off and total 610,000 t at 1.0 g/t. All surface stockpiles were classified as Proved.

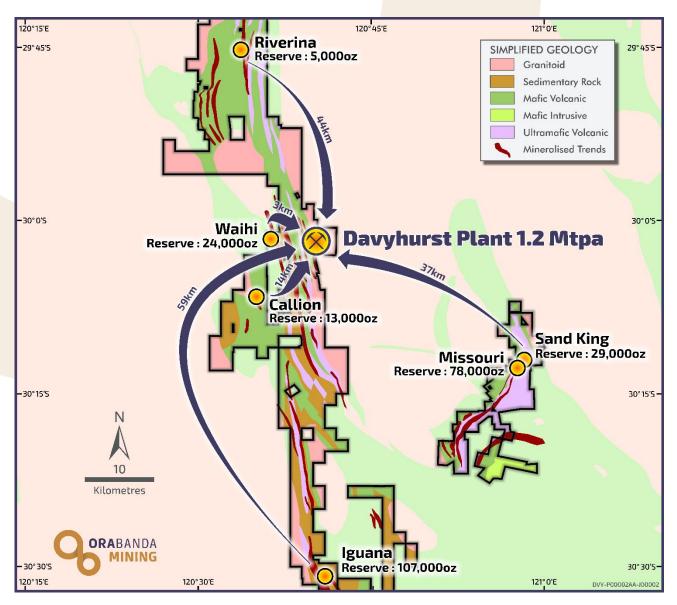


Figure 1 - Deposit Locations

Ore Reserve Estimation: Summary Information as required under Australian Securities Exchange (ASX) Listing Rules 5.9.1

1. Mineral Resources

The Mineral Resource Statement for Riverina Area, British Lion, Silver Tongue, Forehand, Sand King, Missouri, Waihi, Callion, Golden Eagle and Iguana is reported according to the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the JORC Code) 2012 edition. Table 2 summarises the Mineral Resources which are currently converted to Reserves. The full Mineral Resource Statement is detailed in Appendix 2.

DGP Mineral Resources have remained over 2,000,000 oz even accounting for mining depletion over FY22. Significant additions to the DGP Mineral Resources come from Iguana deposit where ounces have increased by 68% from 175,000 oz to 294,000 oz. Minor reductions in Sand King and Missouri Mineral resources have resulted from the adoption of Ordinary Kriging (previously Localised Uniform Conditioning) as the estimation

method, together with mining depletion (Missouri). Although depleted for open pit mining the Riverina Mineral Resources are similar to those previously reported with a 3% decrease in ounces. An updated underground Mineral Resource for Riverina now stands at 151,000 oz, following the 5800m drill program completed in 2021. Callion and Waihi Mineral Resources remain as previously reported.

All Measured and Indicated Mineral Resources within the pit envelopes were included in the Probable Ore Reserve estimate, where the resource exceeded the economic cut-off grade, following the application of mining dilution and ore loss modifying factors. Any Inferred Mineral Resource contained within the mine plan was treated as waste with zero grade.

Existing surface stockpiles are not included in the Mineral Resources.

PROJECT	DEPOSIT		MEAS	URED	INDIC	CATED	INFE	RRED	TO	TAL MATER	RIAL
PROJECT	DEPOSIT		('000t)	(g/t Au)	('000oz.)						
	Ope	en Pit	599	1.5	2,120	1.6	110	1.6	2,829	1.6	141
RIVERINA	RIVERINA Undergr	ound	-	-	351	6.7	361	6.5	712	6.6	151
	т	OTAL	599	1.5	2,471	2.3	471	5.3	3,541	2.6	292
	Ope	en Pit	73	2.3	923	3.4	201	3.0	1,197	3.2	124
	SAND KING Undergr	ound	-	-	408	3.5	586	3.4	994	3.4	110
	т	OTAL	73	2.3	1,331	3.4	787	3.3	2,191	3.3	235
SIBERIA	Ope	n Pit	-	-	980	3.3	50	2.9	1,030	3.2	107
	MISSOURI Undergro	ound	-	-	378	3.3	409	3.6	787	3.4	87
	т	OTAL	-	-	1,358	3.3	459	3.5	1,817	3.3	194
	SIBERIA SUBTO	TAL	73	2	2,689	3.3	1,246	3.4	4,008	3.3	429
	Ope	n Pit	-	-	1,948	2.4	131	2.9	2,079	2.4	159
DAVYHURST	WAIHI Undergro	ound	-	-	188	3.7	195	4.0	383	3.8	47
	т	OTAL	-	-	2,136	2.5	326	3.5	2,462	2.6	206
	Ope	en Pit	-	-	241	3.7	28	1.6	269	3.5	30
CALLION	CALLION Undergr	ound	-	-	255	6.0	156	5.5	411	5.8	77
	т	OTAL	-	-	496	4.9	184	4.9	680	4.9	107
	Ope	n Pit	148	1.9	3,847	1.7	146	1.7	4,141	1.7	226
LADYIDA	IGUANA Undergro	ound	-	-	357	3.5	314	2.7	671	3.1	68
	Т	OTAL	148	1.9	4,204	1.8	460	2.4	4,812	1.9	294
COMBINED T	OTAL		820	1.7	11,996	2.5	2,687	3.7	15,503	2.7	1,328

Table 2: Mineral Resource Estimates

The Missouri, Sand King, Riverina, Waihi and Callion Mineral Resources have been updated in accordance with all relevant aspects of the JORC code 2012, and initially released to the market on 15 December 2016 & 26 May 2020 (Missouri), 3 January 2017 & 26 May 2020 (Sand King), 2 December 2019 & 26 May 2020 (Riverina), 4 February 2020 (Waihi) and 15 May 2020 & 29 June 2020 (Callion)

2. Details on Iguana and Riverina Underground are included in this release.

3. The Riverina, Waihi, Sand King, Missouri, Callion, and Iguana Open Pit Mineral Resource Estimates are reported within a A\$2,400/oz pit shell above 0.5g/t. Riverina, Waihi, Sand King, Missouri, Callion, and Iguana Underground Mineral Resource Estimates are reported from fresh material outside the A\$2,400 pit shell and above 2.0 g/t.

4. Resources are inclusive of in-situ ore reserves and are exclusive of surface stockpiles.

5. The values in the above table have been rounded.

ORABANDA

2. Open Pit Ore Reserve

The Ore Reserve was estimated from the Measured and Indicated Mineral Resource only. All current mining operations were depleted to 30 June 2022.

The Ore Reserve was generated from design studies using appropriate costs as well as geotechnical, dilution and recovery parameters.

A conservative A\$1,850/oz gold price was used to estimate the Ore Reserve and determine appropriate cutoff grades for each project.

Costs were derived from the FY23 budget estimate and current contract pricing.

Dilution parameters were derived from recent mining reconciliations and updated Mineral Resource estimates. All resource models were subcelled Oridinary Krigged models. The dilution skin method was used to reflect the selective mining method being used at Davyhurst.

Recoveries for all ore types are based on detail metallurgical testwork and recent operational processing performance. Included stockpiles inventories consist of ROM stocks and low-grade stocks mined under ownership of Ora Banda up until 30 June 2022.

Mining Method

The Missouri, Sand King, Riverina, Waihi, Callion and Iguana deposits will be mined by open pit methods. Ore and waste will be mined using a conventional mining fleet, with ore mining directly supervised by OBM personnel. 120 tonne class excavators and 90 tonne dump trucks are currently in operation for the load and haul of ore and waste. Drill and blasting will be carried out using track mounted diesel hydraulic blasthole drills and conventional blasting practices, typical of the West Australian Goldfields, will be used.

Dilution Modelling

Dilution modelling for open pit reserves were completed using Mine Stope Optimiser(MSO) functionality in Deswick[™] software. Mineable "stope" shapes were created to simulate dig blocks. The MSO optimisation field used cut-off grades between 0.8 g/t and 1.0 g/t which are current deposit specific cut-offs.

A minimum mining width of 1.5m was applied in the dilution modelling process. Dilution skins applied at Riverina, Callion and Iguana were 0.3 m (oxide), 0.4 m (transitional) or 0.5 m (fresh). A 0.5 m dilution skin was applied at Sand King and Waihi, for all of weathering classificiations. A 0.6 m dilution skin was applied globally to Missouri to account for inclined lode geometries.

Background grades were estimated into the model and were included in the dilution modelling. Dilution grades varied between zero and 0.4 g/t depending on the deposit and the nature of the alteration halo. The global average grade of dilution was estimated to be 0.2 g/t.

Pit Optimisation

All deposits were evalutated initially using Whittle pit optimisation software. Current design for Missouri and Riverina were interrogated to validate econonimcs. All unmined projects (Sand King, Iguana, Callion and Waihi) were reoptimized to account for updated economics and dilution parameters. Pit optimisations were carried out on each deposit using the Mineral Resource models described above. Cost input assumptions were increased from previous Ore Reserve optimisations to reflect the current market conditions and operating

ORABANDA MINING

parameteres. The cut off grades were based on a more conservative gold price (A\$1,850) from the previous Ore Reserve estimate (A\$2,200 - 30 June 2021) to develop a more robust estimate for 2022.

Pit Design

Revised designs were developed for Sand King, Waihi and Callion and a new design was developed for Iguana. Each design was based on the optimisation described above. The current designs for Missouri and Riverina were validated and retained for this Ore Reserve estimate. The economics of all pits were validated against the commercial parameters in a project evaluation cash flow model, which considered project phasing, stockpiling, project capital and the impact of fixed costs. The cash flow modelling was based on a gold price of A\$2,400 per ounce. All pits demonstrated a positive net cash flow with acceptable returns and the global cash costs of the project was estimated to be below the base price (A\$1,850 per ounce) used in the optimisation.

The proposed ultimate pits for the Davyhurst Gold Project are shown in following Figure 2 to Figure 7.

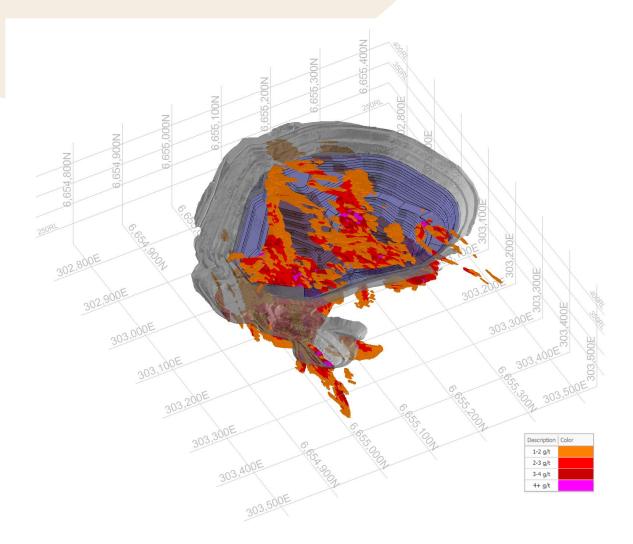


Figure 2 - Missouri open pit design showing diluted blockmodel >1.0gpt

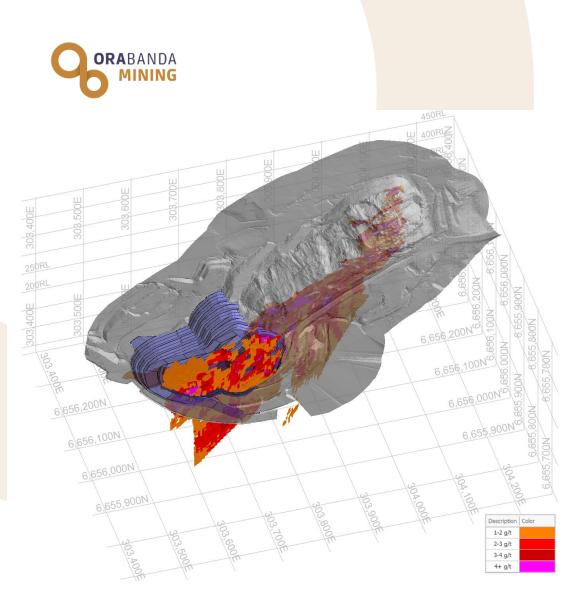


Figure 3 - Sand King open pit design showing diluted blockmodel >1.0gpt

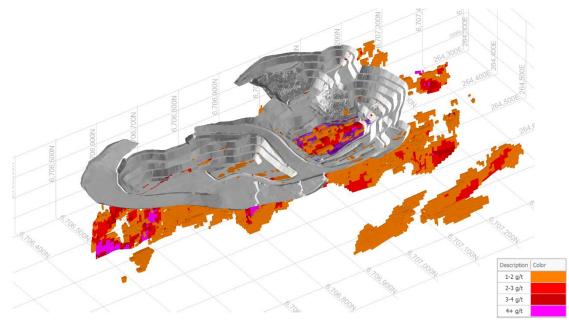


Figure 4 - Riverina open pit design showing diluted blockmodel >1.0gpt

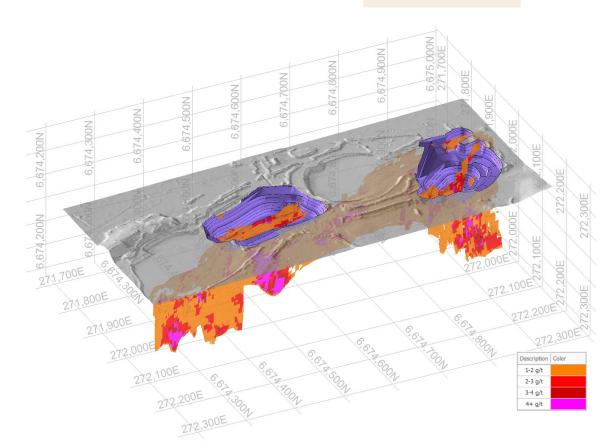


Figure 5 - Waihi open pit designs showing diluted blockmodel >1.0gpt

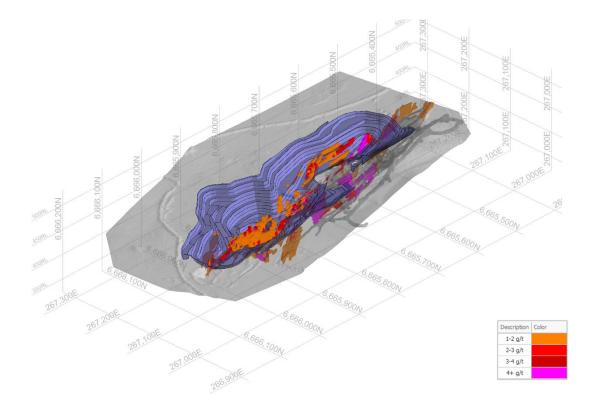


Figure 6 - Callion open pit design showing diluted blockmodel >1.0g/t

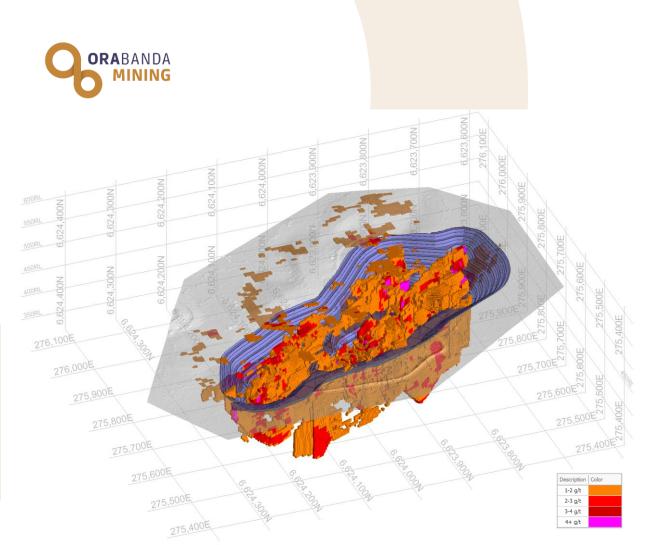


Figure 7 - Iguana open pit design showing diluted blockmodel >1.0gpt

Riverina Underground

The Company is currently conducting resource definition drilling on the Riverina Underground deposit. The economic viability of the Riverina Underground will be assessed following completion of this program.

This announcement was authorised for release to the ASX by Luke Creagh, Chief Executive Officer. For more information about Ora Banda Mining and its projects please visit our website at <u>www.orabandamining.com.au</u>

Investor & Media Queries: Luke Creagh Chief Executive Officer +61 8 6365 4548

ORABANDA

Competent Persons Statement

The information in this announcement that relates to exploration results, and the Riverina, Riverina South, British Lion, Forehand, Silvertongue, Waihi, Golden Eagle, Callion, Iguana, Sand King and Missouri Mineral Resources is based on information compiled under the supervision of Mr Ross Whittle-Herbert, an employee of Ora Banda Mining Limited, who is Member of the Australian Institute of Geoscientists. Mr Whittle-Herbert has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Whittle-Herbert consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The Missouri, Sand King, Riverina Area, British Lion, Waihi, Callion, Golden Eagle, Iguana, Forehand and Silver Tongue Mineral Resources have been updated in accordance with all relevant aspects of the JORC code 2012, and initially released to the market on 15 December 2016 & 26 May 2020 (Missouri), 3 January 2017 & 26 May 2020 (Sand King), 2 December 2019 & 26 May 2020 (Riverina), 4 February 2020 (Waihi), 15 May 2020 & 29 June 2020 (Callion), 8 April 2020 (Golden Eagle), 29 July 2021 (British Lion, Forehand & Silver Tongue) and Iguana (this release).

Mineral Resources other than Sand King, Missouri, Riverina, Forehand, Silver Tongue, British Lion, Waihi, Iguana, Golden Eagle and Callion were first reported in accordance with the JORC 2004 code in Swan Gold Mining Limited Prospectus released to the market on 13 February 2013. Mineral Resources other than Sand King, Missouri, Riverina, Forehand, Silver Tongue, British Lion, Waihi, Iguana, Golden Eagle and Callion have not been updated to comply with JORC Code 2012 on the basis that the information has not materially changed since it was first reported.

The information in this report that relates to Ore Reserves is based on information compiled by Mr Geoff Davidson, who is an independent mining engineering consultant, and has sufficient relevant experience to advise Ora Banda Mining Limited on matters relating to mine design, mine scheduling, mining methodology and mining costs. Mr Davidson is a Fellow member of the of the Australian Institute of Mining and Metallurgy. Mr Davidson is satisfied that the information provided in this statement has been determined to a pre-feasibility level of accuracy or better, based on the data provided by Ora Banda Mining Limited. Mr Davidson consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Forward-looking Statements

This announcement contains forward-looking statements which may be identified by words such as "believes", "estimates", "expects', "intends", "may", "will", "would", "could", or "should" and other similar words that involve risks and uncertainties. These statements are based on an assessment of present economic and operating conditions, and on a number of assumptions regarding future events and actions that, as at the date of this announcement, are expected to take place.

Such forward-looking statements are not guarantees of future performance and involve known and unknown risks, uncertainties, assumptions and other important factors, many of which are beyond the control of the Company, the Directors and management of the Company. These and other factors could cause actual results to differ materially from those expressed in any forward-looking statements.

The Company has no intention to update or revise forward-looking statements, or to publish prospective financial information in the future, regardless of whether new information, future events or any other factors affect the information contained in this announcement, except where required by law.

The Company cannot and does not give assurances that the results, performance or achievements expressed or implied in the forwardlooking statements contained in this announcement will actually occur and investors are cautioned not to place undue reliance on these forward-looking statements.

Appendix 1 – Mineral Resource

The following points pertinent to ASX LR 5.8.1 in relation to the updated estimates are listed below.

GEOLOGY & GEOLOGICAL INTERPRETATION

Lithology

Riverina

Mafic and ultramafic volcanics and volcanogenic sedimentary lithologies (wacke, siltstone, shales) are found in the main Riverina resource area. All rock units have been metamorphosed to amphibolite grade. The mine sequence generally dips steeply to subvertically to the east and lies within the limb of an overturned fold with vergence relationships indicating a synformal closure to the east.

Mafic amphibolite is the dominant rock type at Riverina. Narrow, tightly constrained shear zones within the metabasalt host mineralised quartz veining. A few discrete ultramafic bodies have been identified in the Riverina mine area. Immediately to the west of the Riverina ore zone is a thick body of peridotite.

Narrow bodies of ultramafic are also interleaved with the mafic and sediment units proximal to the orebody in the Murchison Lodes. Metasedimentary bodies are host to mineralisation within both the Murchison and Reggie Lodes. Originally fine-grained greywackes and siltstone, they are now represented as moderately foliated to highly deformed felsic schists with zones that appear mylonitic in nature. The widths of the metasedimentary units range from approximately 5 m to 20 m. A thinly bedded/laminated black shale horizon lies in close proximity to Main Lode ore zones. Semi-massive and massive sulphide zones are found within the black shale unit.

Pegmatite dykes form an ESE-trending dyke swarm that cross-cut all lithologies including alteration related to gold mineralisation. Brittle faults sometimes occur along the dykes and sinistral strike slip offsets along these faults were recorded in the underground mine. Dykes are up to 10 m true thickness, but are more commonly 1 m or less.

Missouri & Sand King

Mafic rocks of the Siberia area have been assigned to the Wongi and Missouri Basalt Units of the Pole Group, while the ultramafics to their south and east are assigned to the Walter Williams Formation. Gold mineralisation associated with the Missouri and Sand King deposits is hosted entirely within the pillowed basaltic lavas of the Missouri basalt, immediately west of the boundary with the komatiite-dominated Walter Williams Formation. Stratigraphic layering in the Siberia area strikes NE-SW and is considered by the Geological Survey of Western Australia to dip moderately towards the south-east and form part of the western limb of the regional-scale Kurrawang Syncline.

Feldspar-porphyry dykes form a NE-trending dyke swarm that cuts both the western and eastern units of the Missouri Basalt. The dykes are up to 5 m thick and comprise quartz-phyric porphyry in which phenocrysts are up to 2 mm long. The composition of the dykes probably is equivalent to that of monzogranite, and they most likely represent the hypabyssal expression of an early pluton(s) of such composition. Porphyry dykes are occasionally mineralised on their margins.

Iguana

Mafic and ultramafic intrusive volcanics and volcanogenic sedimentary lithologies are found in the Iguana resource area. They have been altered to amphibolite grade metamorphism. The mine sequence strikes 320° and dips 70° to 90° to the west.

The metabasalt comprises mineral assemblages of quartz-chlorite-biotite-hornblende and minor feldspar. Hornblende occurs as fine crystalline porphyroblasts and aggregates interlocked with quartz and biotite that exhibit relict igneous textures. Quartz and biotite are products of silicic and potassic alteration and are seen to replace the feldspar and amphibole phases present.

Ultramafic units are strongly magnetic, serpentinised and tremolite-chlorite rich. Minerals noted are amphibole, chlorite, carbonate, serpentine, olivine and opaques. All ultramafics are generally lower greenschist faces.

Post-mineralisation medium to coarse grained pegmatite dykes dip gently west and crosscut all lithologies. Constituent minerals are muscovite-quartz-feldspar.

Structure

Riverina

A strong subvertical structural fabric, ranging from a weak flattening/stretching to schistosity, is present throughout the pit stratigraphy (except in the pegmatite dykes), and is parallel to bedding and lithological contacts. The ubiquitous subvertical cleavage appears to change strike around quartz veins, bending into the strike of veins, suggesting that quartz veins were emplaced under ductile conditions.

Viewed in vertical cross-section, quartz veins exhibit a boudinage form, with well-developed concave shapes and a mineral elongation lineation on the schistose foliation. In a cross-section, on the open pit walls, the rigid quartz veins are observed to be stretched and deformed within a less competent mafic schist host rock. The best continuity of vein width, and probably gold-grade, is in the direction following the mineral elongation lineation, which is measured plunging between 30°–40° to the south.

Subvertical faults, subparallel to the Main Riverina Lodes have been mapped from underground. They intersect the lodes at low angles (<10°), are highly foliated and 2–3 m wide with fault gouge in localised areas. Cross faults strike NW-SE and dip 28° to 48° NE. From underground mapping on the 3 Level, they exhibit a sinistral sense of movement, have a displacement of 5 m to 8 m and extend into the Murchison and Reggie Lodes. The fault structures tend to be 0.5 m to 1.0 m in true width with internal brecciation bleaching and quartz veining. Low angle faults and joints strike NNE-SSW and dip 10° to 40° to the WNW throughout the underground mine. They often appear as single planes and occasionally as sets of close-spaced fractures. Individually, they appear to have no significant effect on mineralisation and grade; however, when they occur as a set, they offset the lode. The maximum observed offset was 1.5 m horizontally. These faults appear to have a dextral movement.

Missouri

Basalts through the Missouri deposit are intruded by three 'corridors' of narrow felsic porphyry dykes, oriented approximately 50–70° towards 115–130°. The dykes are often bounded by thin biotite shears and are occasionally mineralised.

NW striking structures are thought to form a conjugate set with the NE-SW trending narrow felsic porphyries. The dominantly shallowly north-dipping, E-W striking mineralisation forms stacked extension veins which are

ORABANDA MINING

frequently. The shallow north dipping, E-W striking extension veins and associated alteration form the bulk o the mineralisation at Missouri.

Sand King

Gold mineralisation at Sand King is characterised by biotite-bearing shear zones containing quartz extension veins. These occur in several styles: as individual planar extension veins, or as arrays of variably sigmoidal extension veins arranged en échelon within the shear zones and as shear veins. The shear sense inferred from the geometry of these veins is consistently dextral. The dextral shear zones dip 80° towards 320–345° and are developed as sheeted sets approximately parallel with the main flattening fabric in the pillows. The intersections between the shear-lodes and the extension vein sets is the most likely control for high grade shoots and plunge steeply towards the N-NNE. Linking between these are banded albite-pyrite-leucoxene-biotite-amphibole shear zones dipping 65° towards 115°. It is not clear whether these represent altered shear zones or alteration of albitic interflow sediments.

Iguana

Iguana hosts epigenetically structurally controlled gold in ductile shears that appear to be contained between two north trending thrust faults, the late stage brittle Reptile fault to the east and a second bounding fault to the west. Rocks in the area are strongly foliated in the same 320° trend as the stratigraphy. Mineralisation is offset by several late NE faults, which also appear to be mineralised in some areas.

The rocks are L-S tectonites with the structure dominated by a penetrative, upright, differentiated metamorphic cleavage (S1), which contains a strong down-dip stretching lineation (L1) defined by aligned amphiboles and micas. In the central portion of the pit S1 contains boudinaged felsic layers, with the boudin development intensifying towards the main shear. Boudins have long-axes that plunge shallowly to the north, and individual boudins are wrapped by the biotite-amphibole foliation. The shallow plunge of boudin necks provide evidence for (sub) vertical extension. Boudin necks are well known as sites of fluid migration in deforming rocks so the shallow north-plunging boudin necks may provide a geometrical control on ore shoot formation, with tight, linear, shallow north-plunging ore shoots.

Alteration & Mineralisation

Riverina

In mineralised zones, quartz veins are surrounded by visible wall-rock alteration haloes typically <2 m wide, which are relatively small. Depending on vein density and silicification intensity, the alteration haloes may overlap or, where the veins are more widely spaced, the haloes may be separated by unaltered country rock. The common mineralisation assemblage is silica-sericite-pyrite-arsenopyrite. Dominant sulphide minerals include pyrrhotite and pyrite, with pyrrhotite often replacing pyrite. Arsenopyrite has been observed in localised areas in the highest gold grade intervals.

Riverina is characterised by three distinct mineralised shear systems, from west to east Main, Murchision and Reggie.

Missouri & Sand King

There are two alteration events at Missouri and Sand King, including an initial pervasive greenschist alteration event related to metamorphism, and a later hydrothermal alteration event related to shearing. The shears have acted as conduits to hydrothermal fluids causing localised alteration and gold mineralisation. Alteration associated with mineralisation is commonly an assemblage of minerals namely biotite-carbonate-feldspar-pyrrhotite-pyrite. The mineralisation is within distinctive alteration haloes around quartz vein arrays. Thickness of the alteration zones varies from centimetres to several metres. A sharp transition is evident between altered, mineralised basalt and unaltered, unmineralised basalt.

Iguana

Regional alteration of upper greenschist to mid amphibolite is evident at Iguana. Local hydrothermal alteration, associated with the mineralising event is variable but intense biotite-hornblende-silica alteration is proximal to the ore zones. Gold is present in quartz veins and the associated biotite alteration of the amphibole schist. The veins were sited within a narrow zone where the amphibolites have been boudinaged. Arsenopyrite is the main ore mineral, and gold is in these grains (SEM imaging). Gold has also been imaged in one of several potassium feldspar veinlets that brecciates the main shear fabric. The veinlets are not sheared or rotated, indicating that mineralisation took place after the foliation developed.

Weathering

Riverina

The weathering profile at Riverina is highly variable. Weathering increases significantly within shear zones and depth to fresh rock reaches vertical depths of 80m in the centre of Riverina deposit and 40 to 50m on the flanks of the main shear structures. The base of complete oxidation can extend to depths of up to 50 m vertical metres within the main shear zones. The base of complete oxidation over unaltered, massive mafic and ultramafic lithologies can be as shallow as 3–5 m below the current ground surface, as is evident in the north of the current open pit at Riverina. In places, possible zones of depletion in the upper saprolite are interpreted, where weaker mineralised shears appear to terminate ~20 m below surface. Stronger shears project to surface, although some redistribution of gold may have taken place from these shears as well. Significant areas of supergene enrichment are not evident.

Missouri & Sand King

The oxidation profile at Missouri is generally shallow with fresh rock within 30 m or less of surface. Base of complete oxidation is 10 m to 15 m from surface. At Missouri South East, the weathering profile is deeper, fresh rock is encountered at around 60 m and base of complete oxidation at 30 m. Variations occur where the profile deepens slightly in the mineralised zone.

The oxidation profile at Sand King is also thin (<20 m) outside the main deformation corridor that hosts mineralisation. Within the mineralised corridor weathering extends to approximately 40 m below surface at which point the transition to unweathered material occurs over an average distance of 20 m.

Iguana

Weathering increases significantly within shear zones and reaches depths of 90m in the centre of the deposit. Supergene gold enrichment is apparent from grade control drilling in the upper portion of the existing Jamaica Rock pit (mined by Delta Gold in 2000) where significant increases in grade and ounces were mined compared to the resource model.

Overburden comprised up to 6m of aeolian sand lying unconformably on lateritic pisolitic gravels. The top 10 to 20cm of the pisolite gravel has a sandy matrix. Below this the pisolites are clast supported and 1-2m thick. The laterite lies unconformably on a silcrete hardcap or the saprolite. The hardcap is extremely hard, from 0.5 to 1.5m thick and consists of pisolites, rare clasts of quartz and ironstone, cemented by silica.

DRILLING AND SAMPLING, AND SAMPLE ANALYSIS TECHNIQUES

Riverina

Modern exploration in the Riverina area began in in mid 1980's. Numerous operators have held the tenure since. Although a proportion of drilling data is from previous operators, it is generally well documented and to industry standards of the time. In addition, OBM has added significant drilling to the Riverina deposits. All RC and diamond drilling at the deposit is deemed suitable for resource estimation purposes. Previous operators include Riverina Gold NL, Riverina Gold Mines, Greater Pacific Gold NL, Barminco, Barra Resources Ltd., Riverina Resources Ltd., Monarch Gold Ltd., Eastern Goldfields Ltd. and OBM.

RC holes drilled by most operators were typically at least 5 inch in diameter. RC hole diameters from drilling by Riverina Gold NL and Barra Resources is unknown. Diamond holes were all HQ or NQ in diameter.

Early RC and diamond hole locations (Riverina Gold NL, Riverina Gold Mines, Greater Pacific Gold NL) were surveyed on an early Riverina local grid which is oriented to true north. The origin for this grid is 10,000N, 10,000E located at the south-west corner of surveyed tenement M30/98. These coordinates were transformed to MGA94 Zone 51 using well established grid transformation parameters. Drilling by other operators was surveyed by mine surveyors or contractors using DGPS or RTKGPS in either AMG84 Zone 51 or MGA94 Zone 51 coordinates.

Generally shallow RC holes by Riverina Gold NL. and Riverina Gold Mines were not down hole surveyed. Other early operators downhole surveyed RC holes by Eastman camera. Diamond Holes were downhole surveyed by Eastman camera or gyro. Riverina Resources employed Eastmen camera, electronic multi-shot or gyro for surveying. Electronic multishot was used by Monarch Gold and north seekin gyro was used by Eastern Goldfields Ltd. and OBM.

All grade control holes drilled by OBM are surveyed by the mine surveyor and downhole surveyed by rig north seeking gyro.

RC sampling protocols for some early operators (Riverina Gold NL., Riverina Gold Mines, Greater Pacific Gold NL., Barminco) are unknown. A riffle splitter was employed by Riverina Gold Mines and ¼ was sent for analysis. Later operators collected samples through a cyclone and split using either a riffle splitter or cone splitter. Barra Resources, Riverina Resources and Monarch Gold submitted 4m composites for analysis. These were taken using a spear or flour scoop. Anomalous intervals were then resplit using a riffle splitter and submitted for analysis. Eastern Goldfields Ltd. and OBM sampled every meter with a 2-3kg split taken from a cone splitter.

Diamond core was generally sampled to geological boundaries and or ore intervals. Generally half core was sampled though Barra Resources Ltd. submitted whole core for analysis. Core sampling by Eastern Goldfields and OBM was defined by a geological or mineralisation boundary. All drill samples were logged by qualified geologists.

Historical assay QAQC protocols used by companies prior to Monarch Gold's ownership (pre-2007) have not been documented in any detail. Monarch Gold submitted Certified Reference Material every 20th sample in both RC drilling programmes. Duplicate samples were submitted every 25th sample for RC drilling. The protocol adopted by Eastern Goldfields Ltd. and OBM required CRM standards and blanks be inserted every 25 samples for RC and diamond drilling. The frequency rate of duplicate samples was nominally 1 every 30m.

Missouri & Sand King

Modern exploration in the Siberia area commenced in the 1980s by WMC and was followed by numerous operators who held the tenure for various periods. Although a significant proportion of drilling data is from previous operators, it is generally well documented and to industry standards of the time. In addition, OBM has added significant drilling to the Siberia deposits. All RC and diamond drilling at the deposit is deemed suitable for resource estimation purposes.

Previous operators include WMC, Gilt-Edged Mining, Gold Fields Ltd., Siberia Mining Corporation, Monarch Gold Ltd., Eastern Goldfields Ltd. and OBM.

RC drilling was completed by all operators. Hole diameters for WMC, Gilt-Edged Mining and Gold Fields Ltd. are unknown. All other operators drilled either 4 inch (Monarch Gold) or >5 inch diameter holes (Eastern Goldfields, OBM). Diamond core holes were generally HQ or NQ diameter, though WMC drilled some BQ diameter holes. Diamond core by WMC was not oriented, other operators oriented the core. Collar locations were surveyed by various contractors and methods including theodolite (WMC), Differential GPS (Gilt-Edged Mining, GoldFields Ltd., Siberia Mining Corporation) and RTKGPS (Monarch Gold, Eastern goldfields, OBM).

RC holes by WMC were generally not downhole surveyed. RC holes by other operators were downhole surveyed by magnetic methods such as eastman single shot or electronic multi shot. Early diamond holes by WMC were downhole surveyed by Eastman single shot or multi-shot camera approximately every 30m. Later operators surveyed RC holes with electronic multiple shot, Eastman single shot or Gyro. Diamond holes by more recent operators (Siberia Mining Corporation, Eastern goldfields, OBM) were north seeking gyro surveyed.

All grade control holes drilled by OBM are surveyed by the mine surveyor and downhole surveyed by rig north seeking gyro.

RC samples from Delta Gold were collected through a cyclone in large plastic bags at one-metre intervals. All drill samples were logged by qualified geologists

Percussion samples were generally collected at 1 m intervals, split in the field, generally using a riffle splitter to produce a 2-3 kilogram subsample. Some operators composited the 1m samples to either 2m, 4m ar 5m intervals using a spear or scoop to sample from the split reject. The bagged, split 1m samples were submitted for assay if anomalous composite assay results were returned. Core was generally cut in half and sampled at geological boundaries (Gold Fields Ltd., Eastern goldfields, OBM) or 1m intervals (Siberia Mining Corporation). All drill samples were logged by qualified geologists.

ORABANDA

OBM RC drill sample recovery is monitored and visually checked for recovery, moisture and contamination. RC sample weights were recorded at the laboratory and monitored.

Historical QAQC protocols used by companies prior to Gilt Edged Mining's ownership have not been documented in any detail. Gilt Edged Mining routinely used standards, field duplicate samples and check analyses at a second laboratory to monitor analytical quality. Siberia Mining Corporation used standards and field duplicates (1 in 20) during drilling campaigns to provide a reference material to monitor laboratory performance. Monarch Gold submitted Certified Reference Material every 20th sample in both RC drilling programmes. Duplicate samples were submitted every 25th sample for RC drilling. The protocol adopted by Eastern Goldfields Ltd. and OBM required CRM standards and blanks be inserted every 25 samples for RC and diamond drilling. The frequency rate of duplicate samples was nominally 1 every 30m.

Iguana

Resource definition drilling at Iguana has been ongoing since 1995 and completed by numerous operators. Although a significant proportion of drilling data is from previous operators, it is generally well documented and to industry standards of the time. In addition, OBM has added significant drilling to the Iguana deposits All RC and diamond drilling at the deposit is deemed suitable for resource estimation purposes.

Resource drill spacing at Iguana is on a nominal 25mE x 25mN grid. Locally, grade control drilling has reduced spacing to 5mE x 5mN spacing. The majority of holes are inclined at -60° to the east and some at -60° to the west. Ore zones strike at 330° and sub-vertical to steep west dipping.

RC drilling by all operators was completed using 5 or 5.5 inch face sampling hammers. Diamond holes were NQ diameter. Collar locations were surveyed by licensed Surveyors (Delta Gold NL.) and RTKGPS (Monarch Gold, OBM). Magnetic down hole surveys were completed by downhole survey contractors for holes drilled by Delta gold. Monarch Gold holes were surveyed by electronic multishot at 5m intervals by downhole survey contractors. All OBM holes were surveyed by rig operated north seeking gyro.

RC samples from Delta Gold were collected through a cyclone in large plastic bags at one-metre intervals. All drill samples were logged by qualified geologists. Diamond core was oriented and photographed prior to cutting and sampling. Estimated sample recoveries were recorded for each metre interval for both drilling methods. Each RC sample was riffle split to produce a 2-3 kilogram subsample. Holes drilled prior to 2000 were initially sampled in five-metre composites by spear sampling and compositing from the individual metre samples. Anomalous (nominally plus 0.1g/t Au) composite samples were then re-analysed by submitting the one-metre samples from those intervals. Holes drilled during 2000 and 2001 were sampled and analysed at one-metre intervals without compositing. All Monarch Gold samples were collected on 1m intervals via cyclone into green plastic bags and riffle split to a 2-3kg sub-sample for assay. All single metre samples were assayed. RC samples from OBM drilling were submitted as individual 1m samples taken onsite from the cone splitter.

Delta Gold recorded sample recovery information. OBM RC drill sample recovery is monitored and visually checked for recovery, moisture and contamination. RC sample weights were recorded at the laboratory and monitored.

The bulk (80%) of drilling at Iguana was completed by Delta Gold. Standards, blanks and duplicate samples were submitted on a regular basis throughout all phases of resource definition drilling by Delta Gold. Monarch Gold submitted Certified Reference Material every 20th sample in both RC drilling programmes. Duplicate samples were submitted every 25th sample for RC drilling OBM required CRM standards and blanks be

inserted every 25 samples for RC and diamond drilling. The frequency rate of duplicate samples was nominally 1 every 30m.

SAMPLE ANALYSIS METHODS

Riverina

RC samples from Riverina Gold NL were despatched to Genalysis to be analysed for gold by aqua regia/AAS method. Diamond samples were sent to Analabs in Kalgoorlie to be analysed for gold by fire with fusion AAS. Samples from early RC holes drilled by Riverina Gold Mines were analysed by Leonora Laverton Assay Laboratory using Aqua Regia. Later RC samples were submitted to Multilab in Kalgoorlies for 50g Aqua Regia AAS finish. Assay methods employed by Greater Pacific Gold NL and Barminco are unknown but likely Aqua Regia. All RC pulp samples from Barra Resources were sent to Kalgoorlie Assay Laboratories or Australian Laboratory Services Pty Ltd (ALS) in Kalgoorlie for gold analysis. All diamond core samples were sent to Leonora Laverton Assay Laboratory Pty Ltd to be assayed for gold by fire with an AAS finish. Riverina resources Ltd. employed Kalgoorlie Assay Laboratories for Au analysis using a 50 g fire assay with flame AAS finish. Monarch Gold utilised ALS Kalgoorlie or Ultra Trace for either 40g or 50g fire assay, AAS finish.

Eastern Goldfields utilised Intertek-Genalysis in Kalgoorlie, SGS in Kalgoorlie and Nagrom Laboratories in Perth for sample analysis. All assaying was with a 50 g charge analysed by fire assay with an ICP-OES finish. OBM utilised Nagrom Laboratories in Perth for sample analysis, although a small proportion of samples went to Intertek-Genalysis in Kalgoorlie. A 50 g charge was taken and analysed by fire assay with an ICP-OES finish.

Missouri & Sand King

All WMC samples were analysed at the WMC exploration division laboratory by 25g Aqua Regia with AAS finish. Gilt Edged mining analysed composite samples by MinLab, Kalgoorlie using 25g Aqua Regia, AAS finish. Individual 1m samples from composite results >0.2 g/t were submitted to Genalysis in Perth for fire assay with a 50 g charge. RC and diamond samples collected by Gold Fields Ltd. were dried, crushed, split, pulverised and a 50 g charge taken for fire assay at Australian Laboratory Services in Kalgoorlie. All assaying by Siberia Mining Corporation was done by either SGS Analabs in Kalgoorlie or Ultratrace using a 50 g charge taken for fire assay. Monarch gold assayed by 50g fire assay with AAS finish. Samples were submitted to both ALS Laboratories and Ultratrace.

Eastern Goldfields utilised Intertek-Genalysis in Kalgoorlie, Kalassay in Kalgoorlie, SGS in Kalgoorlie and Nagrom Laboratories in Perth for sample analysis. A 50gm charge was taken and analysed by fire assay ICP-OES. OBM utilised Nagrom Laboratories in Perth and SGS in Kalgoorlie for sample analysis. A 50 g charge was taken and analysed by fire assay ICP-OES.

Iguana

Delta Gold requested gold and arsenic analysis from several commercial laboratories. Composite samples from RC drilling were analysed by standard aqua regia digestion and AAS finish. One-metre RC samples and diamond core samples were analysed by 50 gram fire assay. RC samples by Monarch Gold were analysed by ALS, using fire assay and AAS detection. All sampling by OBM was assayed by Nagrom using 50g charge and fire assay ICP-OES.

ORABANDA

ESTIMATION METHODOLOGY

Riverina (Open Pit)

Ore lode interpretation was based on a 0.3 g/t cut-off guided by observed geology. Occasionally lower cutoffs were adopted to preserve continuity. Domain/waste boundaries were treated as hard boundaries and for estimation purposes the mineralised domains were not separated into oxide, transitional and fresh sub domains. All wireframing was completed using Leapfrog[™] modelling software.

Sample data within mineralisation domains were composited to 1m downhole lengths using 0.7m minimum threshold for inclusion. Top cuts were applied to the composite data on a domain by domain basis to reduce the influence of extreme grades.

Blocks in areas of good drill (GC) support had dimensions of 2mE x 5mN x 2.5mRL, elsewhere block dimensions were 2mE x 20mN x 10mRL. Subcelling was used to constrain volumes resulting in minimum 0.25mE x 0.5mN x 0.5mRL dimensions.

Variography was undertaken on the larger mineralised domains within each shear system (Main, Murchison, Reggie). These variograms were applied in the estimation of the smaller domains within each system.

Interpolation was undertaken using Ordinary Kriging into parent blocks. Lodes in each shear system were grouped and estimated with slightly different parameters to lodes in the remaining shear systems. Kriging Neighbourhood Analysis (KNA) was used to define the estimation neighbourhood parameters, including search distances, samples and discretisation. The grade distribution of grade control models for each shear system were used to help control the smoothing of the kriged resource model. Several estimates into the same volume, using resource drilling only, were run changing the maximum samples each time. The estimate with similar grade distribution to the grade control model was selected and the maximum number of samples from that estimate was used for the resource estimation of the shear system.

Estimation was completed using multiple runs, each with less restrictive search and minimum sample parameters.

Riverina (Underground)

The underground resource model is confined to the Main Lode system and three persistent higher grade Murchison lodes. Mineralised domains were for the most part interpreted to a 1.0g/t cut-off grade. All drilling and face sampling from underground development was used to aid the interpretation. RC, diamond drilling and face sampling assay data was used in the estimation of grades. Guided by the main lode mineralisation interpretation completed for the 2020 UG resource, sample intervals of +1g/t Au were manually defined on screen, using Leapfrog[™] software, on a section by section basis. The narrow but variable width of the mineralisation precluded the utilisation of fixed length composite samples as no one composite length was satisfactory for all locations. This led to the adoption of full width compositing which compiles the entire drill hole intersection across the mineralisation into a single composite of variable length. A 2-dimensional estimation technique was adopted where the lodes are projected onto a nominal 2D northing-elevation plane. Prior to estimation, the easting value of the centre point of each domain composite and each block were set to an arbitrary but constant value. The 2D estimation method accounts for the different sample supports by estimating an 'accumulation' variable, which is defined as the product of the measured grade and the width of the lode. The horizontal lode width is also estimated, and the final estimated grade is back calculated from the estimated accumulation and thickness width variables.

ORABANDA MINING

Spatial continuity, using Supervisor[™] software, of accumulation and width variables was evaluated using variography in the 2D plane and the parameters defined were applied in the estimation process. Search neighbourhoods optimised Kriging Neighbourhood Analysis were also defined in Supervisor[™]. Top cuts were applied to the accumulation variable where appropriate.

Estimation of gold accumulation and width was by ordinary kriging into a parent block sizes of 20mN x 15mRL. After estimation in the 2D plane the back-calculate gold grade values were pressed across the full width of the corresponding domain in the final 3D model. The domain wireframes were then used to constrain volumes by removing blocks outside the domains, using suitable sub-celling.

An ID² check estimate using 1m composite gold grades was completed for comparison. The check estimate results were 9% lower in metal content but with 6% higher grade.

The bulk density values for ore were assigned based on the weathering state of the rock and were consistent with values used in the open pit estimate. The model has been depleted to account for existing mining, both underground and open pit.

Missouri & Sand King

Ore lode interpretation was based on a 1 g/t cut-off and influenced by the presence and intensity of quartz veining and biotite-rich alteration. Generally, there was no restriction to internal grade dilution. Occasionally in historical logging wider intervals of biotite alteration were noted with little or no grade. Here the intensity of alteration helped to determine the boundary of the mineralised lode. Domain/waste boundaries were treated as hard boundaries and for estimation purposes the mineralised domains were not separated into oxide, transitional and fresh sub domains. All wireframing was completed using Leapfrog[™] modelling software.

One metre composites were calculated from the raw assay data. Supervisor[™] software was used to establish spatial grade continuity. Top cuts were applied to the composite data on a domain by domain basis to reduce the influence of extreme grades sometimes present in both deposits.

Block model block sizes are 10mE x 10mN x 5mRL with sub-celling to 1.0mE x 1.0mN x 0.5mRL at Missouri and 10mE x 4mN x 10mRL with sub-celling to 1.0mE x 0.5mN x 1.0mRL at Sand King. Estimation was done into the parent blocks. Kriging Neighbourhood Analysis (KNA) was used to define the estimation neighbourhood parameters, including search distances, samples and discretisation. Estimation was completed using multiple runs, each with less restrictive search and minimum sample parameters.

Oxidation was applied based in DTM surfaces defined from geological drill logs. Values were applied according to oxidation state. At Missouri ore densities were 1.8 t/m³ (oxide), 2.4t/m³ (transitional) and 2.85 t/m³ (fresh). At Sank King ore densities were 1.8 t/m³ (oxide), 2.48t/m³ (transitional) and 2.88 t/m³ (fresh).

Surface topography was established by recent pit surveys completed by the Mine Survey department.

Iguana

The resource model is for the most part interpreted to a 0.5g/t cut-off grade guided by geological observation. A minimum of 3m downhole width above 0.5g/t defined a potential bedrock lode. Laterite lodes could be 2m in downhole length. Bedrock lodes had an Internal dilution that was sometimes greater than 2-3m, but this was accepted given reasonable continuity evident at the 0.5g/t cut-off. All wireframing was completed using

ORABANDA MINING

Leapfrog[™] modelling software. In order to check the validity of the interpreted boundaries, contact analysis plots were completed for selected domains. It was established that mineralised domains could be estimated in their entirety, without separating by oxidation state. Also, ore/waste boundaries could be treated as hard boundaries for the estimation.

One metre composites were calculated from the raw assay data. Supervisor[™] software was used to establish spatial grade continuity. Selected lodes with high variability and high maximum grades were selected for top cutting to reduce the influence of the high grade composites.

Block model block sizes are 5mE x 10mN x 10mRL with sub-celling to 0.5mE x 1.0mN x 1.0mRL. Supervisor[™] software was used for Kriging Neighbourhood Analysis (KNA) to assist with defining the estimation neighbourhood. Parameters defined by KNA were optimal block size and search distances, minimum samples and discretisation. The grade distribution of a grade control model in a volume of close spaced RC grade control drilling was used to help control the smoothing of the kriged resource model. Several estimates into the same volume, using resource drilling only, were run changing the maximum samples each time. The estimate with similar grade distribution to the grade control model was selected and the maximum number of samples from that estimate was used for the estimation of the entire deposit. Estimation was completed in 3 passes with an expanded search and reduced minimum/maximum samples for each successive pass.

Density readings were taken from drilling completed by Delta Gold. 377 readings were collected and applied according to oxidation state; 2.0 t/m³ (completely oxidised), 2.2 t/m³ (strongly oxidised) ,2.4t/m³ (transitional) and 2.8 t/m³ (fresh).

CRITERIA USED FOR CLASSIFICATION

Riverina Open Pit

In order to avoid a mosaic style of classification, solid wireframes were constructed to encompass areas considered to adequately fulfil the requirement to be classified as either, measured, indicated or inferred:

- Measured Near surface areas defined by close spaced RC grade control drilling
- Indicated Areas with drill spacing up to approximately 20 mE x 20 mN and with reasonable confidence in the geological interpretation and grade continuity
- Inferred Areas with drill spacing in excess of 20 mE x 20 mN and where grade continuity is poorer as defined by a lower sample density, even though geological continuity may be apparent.

Smaller lodes with low sample count are classified as inferred.

Riverina Underground

Wireframe solids were constructed to encompass areas considered to adequately fulfil the requirement to be classified as either, measured, indicated or inferred:

- Measured Near surface areas defined by close spaced RC grade control drilling
- Indicated Areas with:
 - drill spacing in long section up to approximately 30mN x 30mRL and with reasonable confidence in the geological interpretation and grade continuity.
 - reasonable estimation quality as defined by the conditional bias slope > 0.6
- Inferred Areas with:

- drill spacing in long section in excess of 30mN x 30mRL and where grade continuity is poorer as defined by a lower sample density, even though geological continuity may be apparent.
- \circ poorer estimation quality as defined by the conditional bias slope > 0.2 and < 0.6

Areas of Main lodes, particularly at depth have fairly low sample support and were not classified

Sand King & Missouri

Sand King and Missouri have similar classification metrics. Areas classified as Measured are defined by:

- Close spaced grade control drilling where geological and grade continuity is well established.
- Areas classified as Indicated are defined by:
 - Good support from drilling, averaging a nominal 20 mN x 20 mE
 - Confidence in the mineralised lode interpretation.

Inferred resources are defined where there is a lower confidence in geological and grade continuity as defined by a lower concentration of drilling data. Inferred resources are defined by:

• Drill spacing typically greater than 20 mN x 20 mE

Inferred resources are generally located around the periphery of ore lodes, particularly at depth at Sand King where drilling is sparse.

Iguana

Where the deposits are drilled to a roughly 25m x 25m spacing there is reasonable confidence in the geology and grade interpretation. Existing mining at Iguana (Jamaica Rock pit) has confirmed steep west dipping to sub vertical north-west striking mineralised lodes. Where lodes are defined by two or fewer drill holes, they have been classified as inferred.

Areas classified as Measured are defined by:

• Areas covered by the grade control RC drilling completed by Delta Gold NL. Areas classified as Indicated are defined by:

• Areas covered by closer spaced drilling with drill pierce points <40m apart.

- Inferred resources are defined:
 - Areas covered by wider spaced drilling with drill pierce points >40m apart.

CUT-OFF GRADES AND MODIFYING FACTORS

Reasonable prospects for eventual economic extraction for the updated Open pit Resources (Riverina Area, Missouri, Sand King, Iguana) was confirmed by applying a conceptual \$2,400 optimised pit shell which was generated using the Mineral Resource block models as described above. A possible economic mining inventory was determined from the Measured, Indicated and Inferred material within the unconstrained Mineral Resource. Pit slopes used in the conceptual optimisations for Riverina, Missouri, Sand King and Iguana were based on typical slope parameters used in the Western Australian goldfields for oxide, transition and fresh respectively. Allowance was made for in-pit ramps. Assumed mining costs were applied on a progressive bench by bench basis using contractor supplied budget quotations for the Davyhurst project received in October 2019 for the Davyhurst project. Dilution factors of 15% to 20% were applied and mining recovery was 95%.

The portion of the Open Pit Mineral Resources within the \$2400 pit shell were reported using a cut-off grade of 0.5 g/t. The portions of the Mineral Resource that exists below the pit shells was reported using a 2 g/t cut-off grade, being an approximate estimate of the incremental cut-off for narrow vein underground open

stoping. The underground cut-off was based on a mining cost of \$140 per tonne of ore, dilution of 15% and mining recovery of 95%.

Appendix 2 – Mineral Resource Table

PROJ	БСТ —	Cut Off	MEAS	SURED	INDIC	ATED	INFE	RRED	то	TAL MATER	IAL
PNUJ	ECT	cut On	('000t)	(g/t Au)	('000oz.)						
GOLDEN EAGLE		2.0	63	3.8	215	3.2	206	3.1	484	3.3	51
LIGHTS OF ISRAE	L	3.0	-	-	74	4.3	180	4.2	254	4.2	34
MAKAI SHOOT		1.0	-	-	1,985	2.0	153	1.7	2,138	2.0	136
	Open Pit	0.5	-	-	1,948	2.4	131	2.9	2,079	2.4	159
WAIHI	Underground	2.0	-	-	188	3.7	195	4.0	383	3.8	47
	TOTAL		-	-	2,136	2.5	326	3.5	2,462	2.6	206
Central Davyhu	rst Subtotal		-	-	4,410	2.3	865	3.2	5,338	2.5	427
LADY GLADYS		1.0	-	-	1,858	1.9	190	2.4	2,048	1.9	125
	Open Pit	0.5	599	1.5	2,120	1.6	110	1.6	2,829	1.6	141
RIVERINA AREA	Underground	2.0	-	-	351	6.7	361	6.5	712	6.6	151
	TOTAL		599	1.5	2,471	2.3	471	5.3	3,541	2.6	292
	Open Pit	0.5	-	-	386	1.6	17	1.6	403	1.6	21
BRITISH LION	Underground	2.0	-	-	36	3.2	3	3.8	39	3.2	4
	TOTAL		-	-	422	1.7	20	2.0	442	1.7	25
	Open Pit	0.5	-		-	-	691	1.5	691	1.5	33
FOREHAND	Underground	2.0	-	-	-		153	2.5	153	2.5	12
	TOTAL		-		-	-	844	1.7	844	1.7	46
	Open Pit	0.5	_		-	-	127	2.3	127	2.3	9
SILVER TONGUE		2.0	-		-		77	4.5	77	4.5	11
	TOTAL		-		-	-	204	3.1	204	3.1	21
SUNRAYSIA		1.0	-		175	2.1	318	2.0	493	2.0	32
Riverina-Mullin	e Subtotal		599	1.5	4,926	1.9	2,047	2.8	7,572	2.2	540
	Open Pit	0.5	73	2.3	923	3.4	201	3.0	1,197	3.2	124
SAND KING	Underground	2.0	-		408	3.5	586	3.4	994	3.4	110
	TOTAL		73	2.3	1,331	3.4	787	3.3	2,191	3.3	235
	Open Pit	0.5	-		980	3.3	50	2.9	1,030	3.2	107
MISSOURI	Underground	2.0	-		378	3.3	409	3.6	787	3.4	87
	TOTAL		-		1,358	3.3	459	3.5	1,817	3.3	194
PALMERSTON / C	-	1.0	_		118	2.3	174	2.4	292	2.4	23
BLACK RABBIT		1.0	-				434	3.5	434	3.5	49
Siberia Subtota			_	-	2,807	3.3	1.854	3.3	4,734	3.3	500
Siberia Subtota	Open Pit	0.5	-	-	241	3.7	28	1.6	269	3.5	30
CALLION	Underground	2.0			255	6.0	156	5.5	411	5.8	77
	TOTAL		-	-	496	4.9	184	4.9	680	4.9	107
Callion Subtota			_	-	496	4.9	184	4.9	680	4.9	107
FEDERAL FLAG		1.0	32	2	112	1.8	238	2.5	382	2.3	28
SALMON GUMS		1.0	-		199	2.8	108	2.9	307	2.8	28
WALHALLA		1.0	-		448	1.8	216	1.4	664	1.7	36
WALHALLA NORT	ГН	1.0	-		94	2.4	13	3.0	107	2.5	9
MTBANJO		1.0	-		109	2.3	126	1.4	235	1.8	14
MACEDON		1.0	-	-	-	-	186	1.4	186	1.8	11
Walhalla Subtot	al	1.0	32	2.0	962	2.1	887	2.0	1,881	2.1	125
	Open Pit	1.0	148	2.0	3,847	1.7	146	1.7	4,141	1.7	226
			140	2							
IGUANA	Underground	2.0			357	3.5	314	2.7	671	3.1	68
	TOTAL				4,204	1.8	460	2.4	4,812	1.9	294
LIZARD		1.0	106	4	75	3.7	13	2.8	194	3.8	24
			254	2.8	4,279	3.7	473	4.8	5,006	2.0	318
Lady Ida Subtot	al		234	2.0	4,279	5./	4/5	4.0	3,000	2.0	310

- The Missouri, Sand King, Riverina Open pit, British Lion, Waihi, Callion, Golden Eagle, Forehand and Silver Tongue Mineral Resources have been updated in accordance with all relevant aspects of the JORC code 2012, and initially released to the market on 15 December 2016 & 26 May 2020 (Missouri), 3 January 2017 & 26 May 2020 (Sand King), 2 December 2019 & 26 May 2020 (Riverina), 4 February 2020 (Waihi), 15 May 2020 & 29 June 2020 (Callion), 8 April 2020 (Golden Eagle) and 9 October 2020 (Riverina South). Details on Iguana and Riverina Underground are included in this release.
- 2. All Mineral Resources listed above, with the exception of the Missouri, Sand King, Riverina, British Lion, Waihi, Callion, Golden Eagle, Forehand, Silver Tongue and Iguana Mineral Resources, were prepared previously and first disclosed under the JORC Code 2004 (refer Swan Gold Mining Limited Prospectus released to the market on 13 February 2013). These Mineral Resources have not been updated in accordance with JORC Code 2012 on the basis that the information has not materially changed since it was first reported.
- 3. The Riverina Open Pit, British Lion, Waihi, Sand King, Missouri, Callion, Forehand, Silver Tongue and Iguana Open Pit Mineral Resource Estimates are reported within a A\$2,400/oz pit shell above 0.5g/t. The Riverina Underground, British Lion, Waihi, Sand King, Missouri, Callion, Forehand, Silver Tongue, Iguana and Golden Eagle Underground Mineral Resource Estimates are reported from material outside a A\$2,400 pit shell and above 2.0 g/t.
- 4. Resources are inclusive of in-situ ore reserves and are exclusive of surface stockpiles
- 5. The above table may contain rounding adjustments.

Appendix 3 - JORC CODE, 2012 EDITION – TABLE 1 REPORT TEMPLATE

Section 1 Sampling Techniques and Data – Riverina Area

Information for historical (Pre Ora Banda Mining Limited from 1996 and 2001) drilling and sampling has been extensively viewed and validated where possible. Information pertaining to historical QAQC procedures and data is incomplete but of a sufficient quality and detail to allow drilling and assay data to be used for resource estimations. Further, Ora Banda Mining Limited has undertaken extensive infill and confirmation drilling which confirm historical drill results. Sections 1 and 2 describe the work undertaken by Ora Banda Mining Limited and only refer to historical information where appropriate and/or available.

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Monarch Gold Mining Company Ltd; Industry standard work. RC samples collected and sent to certified laboratories for crushing, pulverising and assay by fire assay (RC) and aqua regia (RAB). Riverina Resources Pty Ltd; Industry standard work. RAB samples taken every metre, composited to 4m using a spear. Samples crushed, pulverised and 50g charge taken for fire assay. RC four metre composite samples were collected using a sample spear. RC and diamond samples crushed, pulverised and 50g charge taken for fire assay. RC four metre composite samples were collected using a sample spear. RC and diamond samples crushed, pulverised and 50g charge taken for fire assay and/or 4 acid digest. Any gold anomalous 4m composite samples were resampled over 1m intervals using a riffle splitter and also sent to Kalgoorlie Assay Laboratory for gold analysis by 50g fire assay. Barra Resources Ltd; Industry standard work. The entirety of each hole was sampled. Each RC and RAB hole was initially sampled by 4m composites using a spear or scop. To obtain a representative sample, the entire 1m sample was split using a riffle splitter into a calico bag. Whole diamond core samples for ore zones were sampled. Entire samples were pulverised before splitting and a 50g charge taken for fire assay. Carpentaria Exploration Company Pty Ltd; Samples were collected over 1m intervals. 1m, 2m and 4m composite samples taken depending on the rock type. Composite samples were collected using a sample spear. About 2kg samples were despatched for analysis. Samples crushed, pulverised and 50g charge taken for fire assay. Malanti Pty Ltd; Industry standard work. 1m samples were collected via a cyclone and passed through a triple splitter giving a 12.5% split of about 2kg. A trowel was used to scoop the sample splits were selected for assay in the first instance. Samples packed in poly weave bags were freighted for analysis. Sample crushed, pulverised and a 50g charge taken for aqua regia analy
Drilling techniques	 Drill type (eg core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Monarch Gold Mining Company Ltd; Aircore and RAB holes were drilled by Challenge Drilling. All RC holes were drilled by Kennedy Drilling Contractors with 5^{1/2"} hammer. Riverina Resources Pty Ltd; RC holes drilled with 5^{1/4"} hammer. Unknown diamond core diameter. Barra Resources Ltd; Holes were drilled by Resource Drilling Pty Ltd using a Schramm 450 drill rig. Carpentaria Exploration Company Pty Ltd; RC drilling by Robinson contractors. Face sampling hammer used. Malanti Pty Ltd; Holes were drilled by Redmond Drilling of Kalgoorlie using a truck mounted Schramm rig with a compressor rated at 900 cfm 350 psi.

Criteria	JORC Code explanation	Commentary
		 Riverina Gold Mines NL; Vacuum holes were drilled by G & B Drilling using a Toyota Landcruiser mounted Edsom vacuum rig fitted with a 2 inch (5.08cm) diameter blade. RAB holes were drilled by PJ and RM Kennedy using a Hydro RAB 50 drill rig mounted on a 4 wheel Hino truck with 600 cfm/200 PSI air capacity. A 51/4 inch hammer and blade were used. RC holes were drilled by either Civil Resources Ltd using an Ingersoll Rand T4W heavy duty percussion rig fitted with a 900 cfm at 350 PSI air compressor and a 51/4 inch (13,34cm diameter) RC hollow hammer or by Swick Drilling using an Ingersoll Rand TH 60 reverse circulation drill rig with 750 cfm/350 PSI air capacity and a 51/4 inch RC hollow hammer or by B. Stockwell of Murray Black's Spec Mining Services using a rig mounted on an 8 x 4 Mercedes. Riverina Gold NL; RC hole were drilled by Green Drilling using Schramm T66 rig. Diamond holes were drilled by Longyear. Diamond holes were sometimes drilled with a RC pre-collar, HQ core and a NQ2 core drilled. OBM - 5 inch diameter RC holes using face sampling hammer with samples collected under cone splitter. HQ3 coring to approx. 40m, then NQ2 to BOH. All core oriented by reflex instrument. RC grade control rig is 5.5 inch diameter hammer with samples collected from a rig mounted cone splitter into calico bags which are submitted for assay.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Auger, RAB and RC drill recoveries were not recoded by Monarch Gold Mining Company Ltd, Riverina Resources Pty Ltd, Barra Resources Ltd, Carpentaria Exploration Company Pty Ltd, Malanti Pty Ltd, Riverina Gold Mines NL or Riverina Gold Mines NL. However Monarch, in a Riverina resource report state that "Good recoveries for RMRC series RC drilling were observed. Minor water was encountered in 27 of the RMRC series drill holes" Diamond Core recoveries are very high due to the competent ground. Any core recovery issues are noted on core blocks and logged. OBM - Diamond drill recoveries are recorded as a percentage calculated from measured core against downhole drilled intervals (core blocks). RC (including Grade Control) sample weights as received by the laboratory are recorded and monitored. There is no known relationship between sample recovery and grade.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Monarch Gold Mining Company Ltd; Qualitative: lithology, mineralisation code, alteration, vein code, sulphide code. Quantitative; percent mineralisation, alteration intensity, percent vein, percent sulphide. Riverina Resources Pty Ltd; Qualitative: lithology, minerals, oxidation, colour, grain, texture, texture intensity, alteration, sulphide, comments. Quantitative: alteration intensity, percent sulphide, percent quartz veins. Barra Resources Ltd; Each meter from all RC drill holes was washed, sieved and collected in chip trays and stored at the Barminco First Hit Mine office. These rock chips were geologically logged using the Barminco Pty Ltd geological logging codes. This data was manually recorded on logging sheets or captured digitally using a HP Jornada hand held computer utilising the Micromine Field Marshall program and entered into a digital database at the Barminco First Hit Mine office. Each diamond drill holes was recovered accordingly. The core was geologically logged using the Barminco Pty Ltd geological logging codes. This data was manually recorded on logging sheets or captured digital database at the Barminco First Hit Mine office. Qualitative: qualifier, lithology, mineralisation, alteration, grain size, texture, colour, oxidation. Quantitative; percentage of quartz and sulphide. Core was photographed. Carpentaria Exploration Company Pty Ltd; Qualitative: description. Quantitative; percent oxidation, percent quartz, percent pyrite. Malanti Pty Ltd; Qualitative for Vacuum holes; colour, grain size, alteration minerals, rock type, structure, vein type, sulphides, oxidation and comments. Quantitative for Vacuum holes; percent veins, percent sulphides. oxidation and comments. Quantitative: RAB holes and RC holes from RV110 to RV295; percent veins, percent sulphides. Qualitative for RAB holes and RC holes from RV110 to RV295; percent veins, percent sulphides. Qualitative for RAB holes and RC holes from RV110 to RV295; percent veins,
Sub- sampling	If core, whether cut or sawn and whether quarter, half or all core taken.	 Monarch Gold Mining Company Ltd; Drill hole samples were collected at 4m and 3m composite intervals. All samples at ALS Kalgoorlie were sorted, dried, split via a riffle splitter using the standard splitting procedure laboratory Method Code SPL-21, pulverised in a ring mill using a

Criteria	JORC Code explanation	Commentary
techniques and sample preparation	 If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 standard low chrome steel ring set to >85% passing 75 micron. If sample was >8 kg it was split prior to pulverising and the remainder retained or discarded. A 250g representative split sample was taken, the remaining residue sample stored at 200. 300g subsample and the residue sample stored. A 40grm charge was taken for analysis. Composite samples returning anomalous values were sampled at 1m intervals using a scoop. For both RC and RAB dilling a duplicate sample was collected at every 25th sample, and a standard sample was submitted every 20th sample. Riverina Resources Pty Ltd; Auger soil samples were collected from a depth of 1.8m or blade refusal. RAB and RC 4m composites were taken using a sample stored. Samples speer. Samples dat 1m intervals using a sample speer. Barra Resources Ltd; Every metre of the drilling was collected through a cyclone into a large green plastic bag and lined up in rows near the hole in rows of 20. The entirety of each hole was simpled. Each hole was initially sampled by 4m composites using a spaer or scoop. Once each hole was logged, intervals considered to be geologically significant were re-sampled at 1m intervals. To obtain a representative sample, the entire Im sample was split to <2.5kg using a lones riffle splitter into a calco bag. Whole diamond core samples for or cones were sampled. Samples greater than 0.1g/A us and that had not been previously sampled at 1m intervals. Composite sample sample sample sample spear. About 2kg samples were collected or analysis. Samples were field, crushed, split so <2.5kg with the drill splitter into assaying in appropriately numbered satchels. Composite sample samples spear sample sample spear into on 1g/L Samples were collected or analysis. Samples were field, crushed, split, pulverised and a charge taken for analysis. Carpoentai Exploration Company Pty Ltd; Samples were collected or analysis. Sample were were sampled at 1m intervals. In addition, any highly anomalous Im samples were ecollected in pass
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the 	 Monarch Gold Mining Company Ltd; RC samples were sent to ALS Kalgoorlie to be analysed gold by fire assay (lab code Au-AA26). This was completed using a 50grm sample charge that was fused with a lead concentrate using the laboratory digestion method FA-Fusion and digested and analysed by Atomic Absorption Spectroscopy against matrix matched standard. DC samples were also sent to Ultra Trace Pty Ltd, Canning Vale Western Australia for gold analysis by lead collection fire assay. Samples were also analysed for palladium and platinum. The Quality control at ALS involved 84 pot fire assay system. The number and position of quality control blanks, laboratory standards and repeats were determined by the batch size. Three repeat samples were generally at position 10, 30, 50 of a batch and the control blanks (one blank) at the

Criteria	JORC Code explanation	Commentary
	parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	 start of a batch of 84 samples. The laboratory standards were inserted randomly and usually two certified internal standards were analysed with a batch, but it was an the discretion of the 'run builder' as to how many standards to add to the batch and where to place them in the run. QAOC at Ultra Trace PIP (LW avs undertaken for every 2TM sample. At random, two repeat samples were chose, on elboratory strandard was inserted and one check sample was taken. The check sample was chosen if the first pass of fire assay shows anomalous value. Riverina Resources PY Ltd, Auger soil amaples were sub Ultra Trace in Perth to be analysed for gold and arsenic using an aquar regia digest and dotermination by ICP-MS. RC samples were to Kalgoorile Assay Laboratory for gold analysis using a four-acid digest and gold analysis by S0g fire assay. Martin Zone samples were to Kalgoorile Assay Laboratory for gold analysis in ga four-acid digest with ICP-DS finish and for Au using a 50gm fine assay dilext with finame AS finish. Some samples were also sent to Ultra Trace in Perth for analysis. 312 end of hole RAB samples from the Forehand Prospect were sent to AusSpec International in Sydney for HyChips spectral analysis developed by AusSpec International and CSIRO capable of analyzing dry samples toreed in hip trays at a rate of at least 1.600 per day. This was undertaken to leafthy alteriation minerals, weathered clays, Fe oxides, and weathering intensity as well as sample mineralogy including mineral crystallinity and mineral composition. (Results are in appendix 4 of NRCO03, GNRCO03 and GNRCO04 and Three diamond drill holes. These surveys were completed by Outer Rim Exploration Services using a Crone Pulse EM probe. (Southern Geoscience Consultants were contracted to Jan her Peth HS usrues and and clays the CJ opp. All RCO03, GNRCO03, GNRCO04 and dragente. Gold was determined by Aqua Regin with CP-Mass Septertonm it rot of CJ opp. Tack was weighed and data captured, with An-AS finish to a detection linit of O.01 (

Criteria	JORC Code explanation	Commentary
		Kalgoorlie using 50g fire assay. Blanks and standards are submitted routinely with GC samples.Fire assay is considered a total technique, Aqua Regia is considered partial.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Holes are not deliberately twinned. OBM - Geological and sample data logged directly into a field computer at the core yard or drill rig using Field Marshall or Geobank Mobile. Data is transferred to Perth via email and imported into Geobank SQL database by the database administrator (DBA). Assay files are received in .csv format and loaded directly into the database by the DBA. Hardcopy and/or digital copies of data are kept for reference if necessary. Monarch Gold Mining Company Ltd; Geological and sample data was logged digitally and .csv or .xls files imported into Datashed SQL database with in-built validation. Samples bags were put into numbered plastic bags and then cable tied. Samples collected daily from site by laboratory. Data entry, verification and storage protocols for remaining operators is unknown. No adjustments have been made to assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Monarch Gold Mining Company Ltd; The collar co-ordinates of aircore and RAB holes and RC holes RMRC001 to RMRC085 were surveyed using GPS. The co-ordinates of holes RMRC086 to RMRC177 were surveyed using the RTKGPS. All surveying was undertaken by staff of Monarch Gold Mining Company Ltd. Down hole surveys were undertaken every 5m by Ausmine using electronic multi-shot (EMS). The gird system used is GDA94 MGA Zone 51. Riverina Resources Pty Ltd; Collar co-ordinates were surveyed using a DGPS. Collar azimuth and inclination were recorded. Downhole surveys for most GNRC holes was by single shot and on rare occasions by gyro. Diamond holes surveyed by electronic multi-shot. The gird system used is AGD 1984 AMG Zone 51. Barra Resources Ltd; Collar co-ordinates for northings, eastings and elevation have been recorded. Collar azimuth and inclination were recorded. Drill hole collar data was collected by the First Hit mine surveyor and down hole data was collected by the drilling company and passed onto the supervising geologist. The gird system used is AGD84 Zone 51. Carpentaria Exploration Company Pty Ltd; A local Riverina South grid was employed to record collar coordinates. Holes were not downhole surveyed. Local co-ordinates were transferred to the AMG and MGA grids using a 2-point transformation. Malanti Pty Ltd; Collar locations of re-sampled RAB holes were noted using a GPS. Holes were not downhole surveyed. Two grid systems were employed; a local Riverina grid and AGD 1996 AMG Zone 51. Local co-ordinates were transferred to the AMG and have been recorded. Collar inclination was recorded. The grid used was the Riverina Gold Mines NL; Collar co-ordinates for northings and eastings and have been recorded. Collar inclination was recorded. The grid used mas the Riverina Gold Mines NL; Collar co-ordinates for northings and eastings and have been recorded. Collar inclination was recorded. The grid used M30/98. Riverina Gold NL; For diamond
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation 	 Exploration results are reported for single holes only. Drill hole spacing is adequate for the current resources reported externally. (Examples are discussed below) Monarch Gold Mining Company Ltd; RAB holes were drilled on 200m x 40m grids and RC holes were drilled on a 20m x 20m and 40m x 20m grids. Riverina Resources Pty Ltd; Auger soil sampling program was taken over 50m x 50m, 50m x 100m and 50m x 200m spaced grids, Silver Tongue RAB and RC holes were drilled on 25m x 25m, 25m x 50m and 50mx 50m space d grids and Corporate James RAB holes were drilled on 50m x

Criteria	JORC Code explanation	Commentary
	procedure(s) and classifications applied. Whether sample compositing has been applied. 	 100m and 25m x 100m spaced grids. Barra Resources Ltd; Auger soil sampling program was taken over 50m x 50m, 50m x 100m and 50m x 200m spaced grids, Silver Tongue RAB and RC holes were drilled on 25m x 25m, 25m x 50m and 50m x 50m spaced grids, Corporate James RAB holes were drilled on 50m x 100m and 25m x 100m spaced grids, Forehand RAB and RC holes were drilled on 50m x 100m, 50m x 50m or 25m x 50m spaced grids and Cactus RC holes were drilled on 10m x 10m, 20m x 20m and 40m x50m spaced grids. Drill intercepts are length weighted, 1g/t lower cut-off, not top-cut, maximum 2m internal dilution. OBM drilling was generally infill in nature, closing up drill spacing to a nominal 20m x20m spacing Samples are not composited for exploration reporting. They are composited for resource estimation.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drilling was oriented at 90° to the strike of mineralisation and inclined at 60°. Examples are discussed below. Monarch Gold Mining Company Ltd; Holes were inclined at 60° and oriented towards the west or east. Riverina Resources Pty Ltd; Holes were inclined at 60° and oriented towards either the west or east. Barra Resources Ltd; Holes were either vertical or inclined at 60° and oriented towards the west. Carpentaria Exploration Company Pty Ltd; Holes were inclined at 60° and oriented towards either the west or east. Malanti Pty Ltd; Holes were inclined at 60° and oriented towards either the west or east. Riverina Gold Mines NL; Vacuum holes from RVV1 to RVV69 and from RVV126 to RVV204 were drilled vertically. Vacuum holes from RVV70 to RVV125 were inclined at 60° and oriented either east or west. Riverina Gold NL; RC holes were inclined at 60° and oriented either east or west. OBM – Drilling predominately inclined at 60 degrees towards the west. Where drilled east the holes were not ideally oriented for the steep east dipping mineralisation. It is unlikely this orientation will have introduced a sampling bias
Sample security	The measures taken to ensure sample security.	 Unknown for all drilling except for the following; Barra Resources Ltd. Samples received at the laboratory were logged in ALS Chemex's unique sample tracking system. A barcode was attached to the original sample bag. The label was then scanned and the weight of sample recorded together with information such as date, time, equipment used and operator name. Monarch; Sample calicos were put into numbered plastic bags and cable tied. Any samples that going to SGS were collected daily by the lab. Samples sent to ALS were placed into sample crates and sent via courier on a weekly basis. OBM - Samples were bagged, tied and in a secure yard. Once submitted to the laboratories they are stored in cages within a secure fenced compound. Samples are tracked through the laboratory via their LIMS.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 OBM has reviewed historic digital data and compared it to hardcopy and digital (Wamex) records. No audits of field sampling procedures has taken place.

Section 1 Sampling Techniques and Data – Missouri & Sand King

Information for historical (Pre Ora Banda Mining Limited from 1980's to 2010) drilling and sampling has been extensively viewed and validated where possible. Information pertaining to historical QAQC procedures and data is incomplete but of a sufficient quality and detail to allow drilling and assay data to be used for resource estimations. Further Ora Banda Mining Limited has undertaken extensive infill and confirmation drilling which confirm historical drill results. Sections 1 and 2 describe the work undertaken by Ora Banda Mining Limited and only refer to historical information where appropriate and/or available.

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Goldfields Group; Auger holes were drilled to a maximum depth of 1.5m. RC samples were routinely collected at 1m intervals. Diamond drill core samples were taken at geological boundaries and sawn in half. Samples pulverised at laboratory. Monarch Gold Mining Company Ltd; RAB samples were collected at 2m and 4m composites via a scoop method at 1m intervals. RC samples were collected at 1m, 2m to 5m intervals. 1m samples were riffle split. WMC; In early drilling by WMC, samples were "panned' for visible gold. Percussion samples were collected at 1m intervals, split in the field. Diamond core samples were cut in half or quartered. Gilt Edged Mining NL; All RAB and RC holes were collected through a cyclone and sampled at 1m intervals, pipe or spear sampled, composited over 5m intervals. The composite samples weighing about 3kg were despatched for analysis. 5m composites with assays greater than 0.2 g/t Au were resampled by riffle-splitting the whole of each 1m sample down to about 3kg prior to being despatched for analysis. Siberia Mining Corporation Ltd; RAB samples were collected at 1m intervals from the drill hole collar using a plastic bucket and laid on the ground. A scoop sample was taken from each sample to form a 5m composite. RC samples were collected at 1m intervals, and passed through a cyclone and split using a two tiered, 75:25 riffle splitter. The split sample (approximately 2-3kg) was stored in a drawn calico bag, which was then placed next to the split sample reject (approximately 10-15kg), which was contained in UV resistant PVC bags. A representative scoop sample was then taken from each split sample reject bags to form a 4m composite sample. Diamond half core sampled at 1m intervals. Ora Banda Mining; RC samples were routinely collected at 1m intervals and cone split. Half sawn core samples crushed, pulverised and 40g or 50g sample taken for fire assay at Intertek. RC grade control samples are collected in calico bags d
Drilling techniques	 Drill type (eg core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Goldfields Group; Auger holes were using an auger rig on the back of a Toyota Landcruiser from Snap Drilling. RC holes were drilled by Western Diamond Drillers using a Schramm Rig. Diamond holes were drilled by Mundy Drilling services using a KL1200 rig. Diamond holes were oriented. Monarch Gold Mining Company Ltd; RC holes were drilled by Kennedy Drilling using a 4 inch blade. WMC; RC percussion holes were drilled using a Schram Rig. RC holes were drilled using blades and hammer. The RC drilling diameter is unknown. Diamond drill holes for NQ core were drilled and reduced to BQ core at depth if necessary. Some diamond holes commenced with a percussion pre-collar. Diamond core generally not oriented. Gilt Edged Mining NL; RC holes were drilled by either Sing Drilling or McKAy Drilling. Both Kalgoorlie companies used a booster and auxiliary compressor. The RC drilling diameter is unknown. Siberia Mining Corporation Ltd; RAB holes were drilled by ProDrill Pty Ltd of Kalgoorlie using an open hole RAB drill rig. All holes were drilled dry. RC holes were drilled by Premium Drilling Pty Ltd of Kalgoorlie using a 350/750 Schram RC drill rig and a 5.25" face sampling hammer. An auxiliary booster was used on holes deeper than 75m. EGL; RC drilling using 5.25 inch face sampling hammer. PQ, HQ and NQ diamond core. PQ drilled from surface until fresh rock encountered, then changed to NQ for geotechnical holes. Resource holes drilled HQ from surface to fresh rock, then changed to NQ. Ora Banda Mining Limited – 5.5 – 5.625 inch diameter RC holes using face sampling hammer with samples collected under cone splitter. Core holes have RC pre-collars up to 150m depth, then NQ2 coring to BOH. All core oriented by reflex instrument. RC grade control rig is 5.5 inch diameter hammer with samples collected from a rig mounted cone splitter into calico bags which are submitted for assay.

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Quantitative auger, RAB and RC drill recoveries were not recoded by Goldfields Group, Monarch Gold Mining Company Ltd, WMC, Gilt Edged Mining NL, Siberia Mining Corporation, Maitland Mining NL, Newcrest Mining Ltd, Julia Mines NL, Placer Dome Asia Pacific Ltd, Goongarrie Gold Pty Ltd, Australian Consolidated Equities Ltd, Centaur Mining and Exploration Ltd, EGL, Britannia Gold NL, Glengarry Resources NL, Sundowner Minerals NL and Gutnick Resources NL. EGL - Diamond drill recoveries are recorded as a percentage calculated from measured core against downhole drilled intervals (core blocks). RC sample recoveries not recorded. Ora Banda Mining Limited – RC drilling recoveries recorded on a pre metre basis based on sample size. Diamond Core recoveries are very high due to the competent ground. Any core recovery issues are noted on core blocks and logged. There is no known relationship between sample recovery and grade.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Goldfields Group; Qualitative: colour, oxidation, hardness, shearing, texture, grain size, rock, alteration, minerals and Quantitative: alteration intensity, mineralisation intensity, structure intensity, vein percent. Monarch Gold Mining Company Ltd; Qualitative: colour, oxidation, hardness, shearing, texture, grain size, rock, alteration, minerals. Quantitative: alteration intensity, mineralisation intensity, structure intensity, vein percent. WMC; RC and diamond logging describes the dominant and minor rock types, mineralisation, oxidation, alteration, texture, vein type and basic structure. Quantitative values assigned to amounts of sulphides, alteration and veining. Gilt Edged Mining NL; Qualitative: rock code, alteration, sulphides, weathering. Siberia Mining Corporation Ltd; Qualitative: alteration, colour, lithology, oxidation, mineralogy, vein style, vein assemblage, remarks. Quantitative: mineralisation intensity. EGL; Qualitative: alteration, colour, grain size, lithology, oxidation, mineralogy, structure, texture, vein style, vein assemblage, remarks. Quantitative: mineralisation intensity, vein percent. Ora Banda Mining Limited - Qualitative: Lithology, colour, oxidation, grainsize, texture, structure, hardness, regolith. Quantitative: estimates are made of quartz veining, sulphide and alteration percentages. Magnetic susceptibility recorded on a per metre basis in core holes. Core hole RQD logged. Core photographed wet and dry. Bulk density determination using Archimede's Principle is routinely undertaken using whole core segments. Grade control holes are logged with an abbreviated mine sequence logging system Entire holes are logged in detail.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Goldfields Group; RC samples were routinely collected at 1m intervals and riffle split. Diamond drill core samples were taken at geological boundaries and sawn in half. RC and diamond samples were dried, crushed, split, pulverised and a 50 gm charge taken. All sampling of resource drilling incorporated a system of standards and blanks to keep strict control on assay reliability. Monarch Gold Mining Company Ltd; RAB samples were collected at 1m intervals and 2m and 4m composites taken via a scoop method. RC samples were collected at 1m, 2m and 5m intervals. 1m samples were riffle split. Samples were split at 1m intervals and re-analysed. Field duplicate samples were taken and analysed every 20 samples. Blanks and standards were routinely submitted with assay batches to evaluate sample preparation and assay accuracy. WMC; In early drilling by WMC, samples were "panned" for visible gold. Percussion samples were collected at 1m intervals, split in the field. Diamond core samples were ut in half or quartered. Samples were dried in fan forced ovens at 80°C for paper packets and 140°C for samples in calico bags, sieved using a nylon mesh .Oversize samples crushed in Jacques jaw crusher to produce -6mm sample, split employing either a rotary or riffle splitter and pulverised using Tema Saying. Gilt Edged Mining NL; All RAB and RC holes were collected through a cyclone and sampled at 1m intervals, pipe or spear sampled, composited over 5m intervals. The composite samples weighing about 3kg were despatched for analysis. 5m composites with assays greater than 0.2 g/t Au were resampled by riffle-splitting the whole of each 1m sample down to about 3kg prior to being despatched for analysis. Samples were despatched to MinLab in Kalgoorlie where they were dried, pulverised to a nominal 90% minus 200 mesh (75 microns) and a 25 gm aliquot taken to be analysed for gold. Comprehensive QA/QC and check sampling reports were produced. Umpire asasy checks were completed using a seco

Criteria	JORC Code explanation	Commentary
		 ground. A scoop sample was taken from each sample to form a 5m composite. RC samples were collected at 1m intervals, and passed through a cyclone and split using a two teared, 75:25 riffle splitter. The split sample (approximately 2-3kg) was stored in a drawn calico bag, which was then placed next to the split sample reject (approximately 10-15kg), which was contained in UV resistant PVC bags. A representative scoop sample was then taken from each split sample reject bags to form a 4m composite sample. Diamond half core was sampled at 1m intervals. Samples were dried, crushed, split, pulverised until 80% passed minus 75 microns and a 50 gm charge taken. Field duplicates were submitted. Composites with assays greater than 0.2 g/t Au were re-assayed using individual 1m re-split samples. EGL & Swan Gold; RC samples were routinely collected at 1m intervals from a cone splitter and submitted for QAQC analysis. Diamond core in sampled at 1m intervals or to zones of geological interest. Core samples are sawn in half. Minimum sample length in NQ core or 0.3m. Ora Banda Mining Limited – RC samples were submitted as individual 1m split samples (cone splitter) or composited to 4m by PVC spear. Half-core samples, cut by automated core saw. Core sample intervals selected by geologist and defined by geological and/or mineralisation boundaries. RC samples were dried, crushed, split, pulverised and a 50gm charge taken. Field duplicates, blanks and standards were submitted for QAQC analysis. Grade control samples are prepared in the SGS on-site laboratory or at the SGS Kalgoorlie laboratory. GC samples are dried, crushed, split, pulverised and a 50gm charge taken for inter samples are prepared in the SGS metaret.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Goldfields Group; Auger samples were set to Analabs (Welshpool) to be assayed for gold to 1ppb by graphite furnace P605 and arsenic to 1ppm by aqua regia hydride H605. RC samples were submitted to Australian Laboratory Services (ALS) in Kalgoorlie for gold and arsenic analysis. Fire assay methods were used for gold analysis with 50gm charge, detection limit of 0.01ppm Au, while Aqua Regia methods, with detection limits of 5ppm As, were used for arsenic analysis. Diamond drill core samples were despatched to Genalysis in Kalgoorlie and analysed for gold using 50gm fire assay to 0.01ppm. A system of standards and blanks were incorporated in all sample despatches to keep a strict control on assay reliability. QA/QC re-assaying of mineralised RC intersections and interpreted structures was undertaken later in the reporting period. Monarch Gold Mining Company Ltd; Samples submitted to ALS for 50g Fire Assay with AAS finish. Samples were also analysed at Ultratrace for gold, palladium and platinum. Submitted field duplicates, blanks and standards for QAQC analysis. WMC; All samples were sent to WMC Exploration Division Kalgoorlie Laboratory to be analysed for gold using wet method, aqua regia leach, reading by AAS; a 25gm sample was digeted with aqua regia, the gold extracted using aliquot DIBK and the solvent backwashed. The gold concentration was determined by Atomic Absorption. Gilt Edged Mining NL; All samples were submitted to MInlab of Kalgoorlie to be assayed for gold using 50gm Fire Assay with detection limit of 0.01ppm and 1m samples assayed by Fire/AAS with a detection limit of 0.01ppm. Certified reference material standards was employed. Duplicate samples, analytical standards, and check analyses at a second laboratory were used to monitor analytical quality. Siberia Mining Corporation Ltd; All samples were submitted to SGS Analabs in Kalgoorlie to be assayed for gold using 50gm Fire Assay with detection limit at 0.01ppm Au and for sulphur. S

Criteria	JORC Code explanation	Commentary
		samples are analysed at SGS, Kalgoorlie using 50g fire assay. Blanks and standards are submitted routinely with GC samples.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Selected drill intersections from WMC, Goldfields and Siberia Mining Corporation diamond core have been inspected by EGL/OBM geologists. Some WMC holes have been re-logged by EGL geologists and mineralisation identified at the reported intervals. Drill intersections from WMC and Goldfields diamond core were inspected by Siberia Mining Corporation geologists in 2005 and mineralization was visible in core at the expected intervals. Mineralisation widths and styles are very comparable with NQ2 drilling by SMC in 2004. Holes are not deliberately twinned. WMC; Hand written geology logs and assays were digitally captured. EGL; Data has been verified by reviewing original drill and assay logs. Print outs of computerized sample intervals and assays generated by WMC were used to verify the intercepts reported. Geological and sample data logged directly into field computer at the core yard. Data is transferred to Perth via email and imported into GBIS SQL database by the database administrator (DBA). Assay files are received in .csv format and loaded directly into the database by the DBA. Hardcopy and/or digital copies of data are kept for reference if necessary. Monarch Gold Mining Company Ltd; Geological and sample data logged digitally and .csv or .xls files imported into Datashed SQL database with in-built validation. Ora Banda Mining Limited - Geological and sample data logged directly into field computer (Panasonic Toughbook CF-31) at the core yard or at the drill rig using Geobank Mobile. Data is exported from the logging computer, copied onto the company servers and imported into Geobank SQL database by the database administrator (DBA). Assay files are received in .csv format and loaded directly into the database of data are kept for reference if necessary. Monarch Gold Mining Limited - Geological and sample data logged directly into field computer (Panasonic Toughbook CF-31) at the core yard or at the drill ri
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Goldfields Group; Collar co-ordinates for RC and DD holes, including elevation were surveyed with DGPS. RAB holes were located with GPS. Downhole surveys were taken every 10m for RC and DD holes, method unknown. RAB holes not downhole surveyed. The gird system used is AGD 1984 AMG Zone 51. Monarch Gold Mining Company Ltd; Drill hole collars were surveyed by Spectrum Surveys of Kalgoorlie using RTK GPS. Downhole surveys were undertaken by electronic multiple shot (ems) or Eastman single shot. The gird system used is GDA1994 MGA Zone 51. WMC; Drill hole collars were surveyed by Electronic Distance Meter (EDM) theodolite by the Kalgoorlie Gold Operations' mine surveyor. Holes also surveyed using theodolite by McGay Surveys as well as by WMC mine surveyors. WMC RC holes were generally not downhole surveyed. Diamond holes down hole surveyed by Eastman single shot camera or multishot approximately every 30m. The gird system used is AGD 1984 AMG Zone 51. Gilt Edged Mining NL; Contract surveyors were engaged for siting of drill holes prior to drilling, pick-up of accurate drill hole co-ordinates after drilling and down-hole plunge and azimuth readings. All holes drilled after 1998 were picked up by Fugro Survey Pty Ltd of Kalgoorlie using differential GPS. The gird system used is AGD 1984 AMG Zone 51. Siberia Mining Corporation Ltd; Collar co-ordinates for northings, eastings and elevation were recorded by Fugro Spatial Solutions Pty Ltd. The gird system used is AGD 1984 AMG Zone 51. Diamond holes surveys were collected using electronic multishot by the drillers. Subsequent to drilling holes were open hole gyro surveyed by ABIMS where possible. The gird system used is GDA1994 MGA Zone 51. Ora Banda Mining Limited (RC, DD) MGA94, zone 51. Diamond holes surveys were collected using electronic multishot by the drillers. Subsequent to drilling, holes are picked up using RTK GPS. Orlil-hole downhole surveys are recorded every 18-30m using a reflex

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drilling is predominantly on a 20mE X 20mN grid. At Sand King the data spacing and distribution is sufficient to establish geological and grade continuity to support the definition of Mineral Resource and classifications as defined under the JORC 2012 code. Samples are not composited for reporting. Samples are composited for resource calculations.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 At Sand King drilling is predominantly inclined to the south, optimal for the predominantly ENE striking, north dipping mineralisation. It is not known whether there is any introduced sample bias due to drill orientation.
Sample security	The measures taken to ensure sample security.	 Unknown for earlier operators. EGL – Samples are bagged, tied and in a secure yard on site. Once submitted to the laboratories they are stored in cages within a secure fenced compound. Samples are tracked through the laboratory via their LIMS. Monarch - Pre-numbered sample bags were put into numbered plastic bags. These numbers were written on the submission forms which were checked by the geologist. Plastic bags were then securely cable tied and placed in a secure location. Samples were then picked up by the Lab in Kalgoorlie or deliver to Perth via courier. A work order conformation was emailed to Monarch personnel for each sample submission once samples were collected on the day of drilling and bagged into cable tied polyweave bags. Polyweave bags are stored into bulka bags on pallets in a secure yard on-site. Once submitted to the laboratories they are stored in cages within a secure fenced compound. Samples are tracked through the laboratory via their LIMS.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Digital data from the SQL database has been reviewed by EGL and is consistent with hard copy and digital WAMEX data. Siberia Mining Corporation conducted a due diligence on the data and core in 2005 and were "comfortable with the quality and integrity of the data". Digital data has been reviewed and is consistent with hard copy data. Monarch Gold Mining Company Ltd; Monthly QAQC reports were produced to monitor accuracy and precision.

Section 1 Sampling Techniques and Data – Waihi

Information for historical (Pre Ora Banda Mining Limited from 1980's to 2010) drilling and sampling has been extensively viewed and validated where possible. Information pertaining to historical QAQC procedures and data is incomplete but of a sufficient quality and detail to allow drilling and assay data to be used for resource estimations. Further Ora Banda Mining Limited has undertaken extensive infill and confirmation drilling which confirm historical drill results. Sections 1 and 2 describe the work undertaken by Ora Banda Mining Limited and only refer to historical information where appropriate and/or available.

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Billiton - RAB and RC 1m samples with RAB being composited to 2m. Diamond core of NQ size. Assay sample techniques undocumented Consolidated Exploration (ConsEx) – RAB 1m samples usually dispatched as 3m composites but occasional 1m. RC a mix of 1m sampling or 2m composites. Lady Elleen programs RC drilling made use of roller, Blade or hammer with crossover sub all nominally 5.5 inch diameter to obtain 2.3kg sample. Composite 2m samples were hammer milled, mixed and split to 200g then pulverised. 1m samples single stage mix and ground. Sub – samples taken for aqua regia and fire assay. Cons Gold (Consolidated Gold) – RC 1m samples where alteration is visible. Remainder of hole composited to 4m. 2 to 3 kg samples, including core, sent to laboratory for crushing, pulverising and 50g Fire Assay. Croesus – RC 1m samples collected under cyclone. 5m comps assayed for gold by 50g Fire assay. NQ diamond except for geotechnical purposes (HQ triple). DPPL (Davyhurst Project Pty. Ltd.)- 4.25 to 5.5 inch RC drilling with face hammer. Potential mineralisation sampled and assayed on a metre basis otherwise 4m composites. Samples jaw crushed and pulverised before taking a 50g m charge for fire assay. Ora Banda Mining Limited (OBM) – RC samples collected from the levelled cone splitter directly off rig into calico bags. Splitter maintained on level site to ensure sample representivity. 1m samples are dried, crushed, pulverised and a 50g charge is analysed by Fire Assay. Half core samples, act by saw. Core sample intervals selected by geologist and defined by geological and/or mineralisation boundaries, or sampled to 1m. Samples are crushed, pulverized and a 40g or 50g charge is analysed by Fire Assay. WMC - RC Sampling on 1m basis, assayed by aqua regia method, unknown laboratory.
Drilling techniques	 Drill type (eg core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Billiton RAB and RC (Conventional hammer) diameter undocumented with use of roller/blade and hammer. NQ Diamond core ConsEx - RC drilling with roller, blade or hammer with crossover sub. Cons Gold – NQ diamond and HQ (triple) for geotechnical holes. RAB and RC. 4.25 to 5.5 inch RC drilling with stabilisers and face sampling hammers. Croesus – Diamond holes NQ2 diameter. RC and RAB details undocumented but assumed to be industry standard at the time being 5.5 inch face sampling hammers and 4 inch diameter respectively. Delta – RAB - details undocumented DPPL - NQ core and HQ for geotechnical holes. RC drilling with stabilisers and face sampling hammers. OBM - HQ3 coring to approx. 40m, then NQ2 to BOH. All core oriented by reflex instrument. RC drilled with face sampling hammer, 5.5" – 5.625" diameter WMC – Conventional RC hammer, diameter unknown and RAB drilling details undocumented.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery 	 RC drill recoveries were not recorded by Aberfoyle/Bardoc, Annaconda, Ashton, Consolidated Gold, Croesus, Delta, DPPL, Hill Minerals, Intrepid, Monarch, Mt Kersey, Normandy, Pancontinental, Texas Gulf, West coast holdings or WMC Billiton – Recoveries for some RC drilling programs were examined in 1986 but raw data not available.

Criteria	JORC Code explanation	Commentary
	 and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 ConsEx – 2 metre plastic pipe inserted into cyclone vent. Cyclone washed at the end of each hole or if water injected. Sample weights measured for Homeward bound (no bias observed) and Lady Eileen prospects (generally no bias observed aside from two high grade samples perceived to be due to coarse grained gold) OBM - Diamond drill recoveries are recorded as a percentage calculated from measured core against downhole drilled intervals (core blocks). RC sample recoveries are approximated based on the size of the bulk sample and recorded in drill log tables. It is unknown whether a relationship exists between sample recovery and grade or whether sample bias may have occurred.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Billiton - Qualitative: lithology, alteration for Diamond and RAB. RC logging details unavailable Consolidated Exploration- Qualitative: lithology, colour, alteration, grainsize (at times). Quantitative: Quartz mineralisation at times Consolidated Gold/ DPPL - Qualitative: lithology, colour, oxidation, alteration, with grainsize, texture and structure often recorded in diamond drilling. Quantitative: Quartz veining. Core photographed. Logging entered directly into HPLX200 data loggers. Croesus - Most holes photographed, geologically logged and geotechnical and magnetic susceptibility measurements were taken. Qualitative: Lithology, colour, grainsize, alteration, oxidation, texture, structures, regolith. Quantitative: Quartz veining OBM - Qualitative: Lithology, colour, oxidation, grainsize, texture, structure, hardness, regolith. Quantitative: estimates are made of quartz veining, sulphide and alteration percentages. Core photographed wet and dry. Magnetic susceptibility recorded for core holes. Bulk density measurements taken at regular intervals for core holes (determined by Archimedes Principle). WMC RC: Qualitative: Lithology, Colour, Grainsize, Alteration and oxidation Some logging detail was lost during translation from one logging system to another. This has been rectified by referring back to original logs. Entire holes were logged by all operators
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Billiton – Sub-sampling methods undocumented. 1m repeat fire assays of 2m RAB comps at Lady Eileen were done. Duplicates for RAB and RC inserted however frequency unknown. ConsEx – RC holes sampled on 1m basis and riffle split to 1-2kg samples for 3m composites or 2-3kg samples for 2m composites. Composite 2m samples were hammer milled, mixed and split to 200g then pulverised to 200#. 1m samples single stage mix and ground to 200#. Consgold - RC Samples collected via cyclone at 1m intervals and passed through 3 stage riffle splitter. A 2-3kg fraction was calico bagged for analysis, the residue collected in plastic bags and stored on site. Potentially mineralised zones were sampled at 1m intervals. the remainder composited to 4m by unknown method. Composite samples returning >0.19g/t were re submitted at 1m intervals. Samples underwent mixermill preparation (2-3kg) by Amdel Laboratories. RAB 4m composite samples unsig PVC spear. Samples returning >0.19g/t were re submitted at 1m intervals. Diamond drill samples were sawn into half core. One half was jaw crushed, then pulverised using a labtechnics mill. A quartz blank was pulverised between each sample to avoid contamination. Field duplicates from residues at 1 in 20 frequency submitted. Croesus RC/RAB - 1m samples collected under cyclone. 5m comps, spear sampled with 50mm PVC pipe. Wet RC drill samples, returning values greater than 0.1g/t gold, were riffle split at 1m intervals, were samples where dry, and grab sampled where wet. RAB 1m resampling method undocumented. Samples were dried, crushed and split to obtain a sample less than 3.5kg, and then fine pulverised prior to a 50gm charge being collected and analysed. Every 20th sample was duplicated in the field and submitted for analysis. Diamond tails were cut to half core and sampled based on geological boundaries and identified prospective zones. Samples size varied from 0.2m to1m. Core samples were sent to Ultratrace Laboratories of Perth<
Quality of assay data	• The nature, quality and appropriateness of the assaying and laboratory procedures used	Billiton - Laboratory and methods undocumented. Standards for RAB and RC inserted however frequency unknown

Criteria	JORC Code explanation	Commentary
and laboratory tests	 and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 ConsEx – Genalysis composite 2m samples were hammer milled, mixed and split to 200g then pulverised to 200#. 1m samples single stage mix and ground to 200#. Phase 1 standard wet chemical multi acid digestion and AAS. Second phase were also pre-roasted. Results of >1g/t re-assayed by fire assay. Check assays at umpire lab (Classic labs) for Lady Eileen drilling - significant differences in high grade samples, otherwise considered good. Consolidated Gold/ DPL – RC and RAB - Mixermill prep with fire assay 50g charge at AMDEL, Minilab or Analabs Laboratories in Kalgoorlie. Half core was diamond sawn, jaw crushed, milled using LABTECHNICS mill at AMDEL for 50g charge by fire assay. Gannet standards submitted to monitor lab accuracy for infill resource drilling. Pulp umpire analysis was done but frequency unknown (1995). Screen fire assays of selected high grade samples. Quartz blanks submitted between each diamond core sample. Croesus samples analysed for Au by Fire Assay/ICPOES by Ultratrace in Perth. Gannet standards and blank samples made by Croesus were submitted with split sample submissions. QAQC analysis of repeats was analysed by Firing a 50gm portion of the sample. Lower sample weights may be employed for samples with very high sulphide and metal contents. This is the classical fire assay process and will give total separation of gold. An ICPOES finish is used. Commercially prepared standard samples and blanks are inserted in the sample stream at a rate of 1:25 for standards and 1:25 for blanks. Sizing results (percentage of pulverised sample passing a 75µm mesh) are undertaken on approximately 1 in 40 samples. Duplicate samples are submitted for RC holes only at a rate of approximately 1:30. The accuracy (standards) and precision (repeats) of assaying are deemed acceptable. WMC drill samples were assayed by aqua regia method, unknown laboratory. Fire assay is considered a total technique and aqua regia is considered a partial technique.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 OBM geologists have viewed selected diamond holes from certain deposits, including Waihi and verified the location of mineralised intervals. ConsGold – Each metre interval geologically logged directly into HPLX2000 with standardised logging codes. Twinned holes were occasionally used by previous operators but this practice was not common. OBM - Geological and sample data logged directly into field computer (Panasonic Toughbook CF-31) using Geobank Mobile. Data is exported onto company servers and imported into Geobank SQL database by the database administrator (DBA). Assay files are received in .csv format and loaded directly into the database by the DBA. Hardcopy and/or digital copies of data are kept for reference if necessary. Data entry, verification and storage protocols for remaining operators is unknown. No adjustments have been made to assay data
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 RAB and AC holes are/were not routinely collar surveyed or downhole surveyed due to their limited use in resource estimation. To this end, discussion of RAB and AC drilling is omitted from this section. RC/GC (grade control) and shallow RC holes are/were not routinely downhole surveyed due to their shallow nature reducing the chance of significant deviation. Barren exploration RC holes were not routinely downhole surveyed or collar surveyed. DD holes were routinely collar and downhole surveyed by most operators or have been re-surveyed by subsequent operators. The influence of magnetic rocks on the azimuths of magnetic down hole surveys is minor. Early holes surveyed in AMG zone 51 and converted to MGA using Geobank and or Datashed data management software. Billiton (RC, DD) Local Lights of Israel grid undergone 2 point transformation. Downhole surveys when performed were by undocumented method with a 25m interval average ConsEx (RC). Drilled on local grids (possibly truncated AMG84, zone 51). Holes appear to have been surveyed using AMG, zone 51 grid at a later stage. Numerous vertical holes not down-hole surveyed. Downhole surveys when performed were by undocumented method with a 9m interval average Cons Gold/DPPL (RC, DD) Local grids and AMG84 zone 51 used. RC and DD Collars surveyed by licensed surveyors to respective grids. Holes of all types routinely collar surveyed whist RC resource holes routinely downhole surveyed by various methods including gyro and EMS with average intervals ranging between 10-25m. Croesus (RC, DD) Various local grids and AMG zone 51. RC, DD holes routinely collar surveyed and downhole surveyed using Electronic Multishot (EMS), GRYO, Eastman single shot or combination thereof at 10-15m average interval.

Criteria	JORC Code explanation	Commentary
		 Hills (RC) Local grid used. OBM (RC, DD) MGA94 Zone 51. Drill hole collars are marked out and collar positions (post-drilling) picked up by a registered surveyor using RTK-GPS. Drill-hole, downhole surveys are recorded every 18-30m using a reflex digital downhole camera (RC) or Gyro tool (DD). Some RC holes were not surveyed if holes short and/or drilling an early stage exploration project. WMC (RC, DD) - Digital data provided by ConsGold. (Wamex report a50226). Downhole surveys when performed were by undocumented method with a 16m interval average
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Data spacing nominally 20m x 20m but down to circa 10m x 10m and grade control drilling at circa 5m x 5m. Drill hole spacing is adequate to establish geological and grade continuity for the Waihi deposit for the purpose of Mineral Resource and Ore Reserve estimation. Composites of drill intercepts are length weighted, 1g/t lower cut-off, not top-cut, maximum 2m internal dilution
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Mineralised structures at Waihi are steep dipping and strike circa 320° to 345° Drilling is dominantly oriented to the east on a Waihi local grid which is rotated -14 degrees from the MGA north. Drilling is therefore oriented towards 76° on the MGA grid and to a lesser extent 256°, orthogonal to the mineralisation strike. Drillhole inclinations range from -50 to -90°. At Homeward bound some drill holes were drilled down the structure in an attempt to better define the folding present. It is unknown whether the orientation of sampling achieves unbiased sampling, though it is considered unlikely as it the majority of holes have optimally intersected the mineralised lodes.
Sample security	The measures taken to ensure sample security.	 Undocumented for most early operators. ConsGold – RC residues stored onsite OBM – Samples are bagged into cable-tied polyweave bags and stored in bulka bags in a secure yard. Once submitted to the laboratories they are stored in cages within a secure fenced compound. Samples are tracked through the laboratory via their LIMS.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 OBM has reviewed historic digital data and compared it to hardcopy and digital (Wamex) records. Changes were made to the SQL database where necessary. No audits of sampling techniques have been done.

Section 1 Sampling Techniques and Data – Iguana

Information for historical (Pre Ora Banda Mining Limited from 1996 and 2001) drilling and sampling has been extensively viewed and validated where possible. Information pertaining to historical QAQC procedures and data is incomplete but of a sufficient quality and detail to allow drilling and assay data to be used for resource estimations. Further, Ora Banda Mining Limited has undertaken extensive infill and confirmation drilling which confirm historical drill results. Sections 1 and 2 describe the work undertaken by Ora Banda Mining Limited and only refer to historical information where appropriate and/or available.

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Aberfoyle - RC, RAB and AC drilling with 1m sampling from cyclone (BDRB prefixed holes RAB drilling with 2m sampling). Samples sent to accredited laboratories for drying, crushing and pulverising. Composite samples assayed by aqua regia/AAS (except in areas of elevated graphite – Fire assay) and those returning greater that 0.2-0.3g/t were re-assayed as individual metres by Fire Assay to ALS Kalgoorlie for SOgm charge fire assay with 0.01ppm detection limit. HQ triple DD drilling was halved, 50gm charge fire assay with 0.01ppm detection limit. EGL - RC samples collected from the riffle or cone splitter directly off rig into calico bags. Splitter maintained on level site to ensure sample representivity. Im samples are dried, crushed, pulverised and a 40g charge is analysed by Fire Assay. Roper River Resources - RAB: 1m sampling with blade or hammer. Dried, crushed and pulverised samples analysed by aqua regia/AAS finish with 25gm charge. Monarch - AC, RAB and RC drilling on 1m sampling basis with RAB samples being composited to 4m for initial analysis by aqua regia/AAS finish with 25gm charge. Monarch - AC, RAB and RC drilling on 1m sampling of AC, RAB and RC drilling composites and individual re-assay dispatched for Fire Assay. Siberia Mining Corporation (SMC) – 1m sampling of AC, RAB and RC drilling composites and individual re-assay dispatched for Fire Assay. Perilya - 5m composite RAB and Aircore assayed at Analabs Perth by Method P649, 50g Aqua Regia, DIBK, Carbon Rod. Croesus – RC 1m samples collected under cyclone. RAB drilling on a 1m basis. 3.5kg samples were pulverised to make 50g charge for analysis by fire assay/ICP Optical Spectrometry. Delta – 1m sampling of AC, RAB and RC. 5m composite dispatched to Genalysis and/or ALS laboratories Kalgoorlie for mixermill prep followed by aqua regia with 0.01ppm detection limit. Composite assays returning values >= 0.1ppm Au, corresponding single
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Aberfoyle – No details for early RAB drilling. Later drilling involved RAB drilling using 4-4.25 inch blade or hammer to blade refusal. AC using 3.5 inch blade RC: 5.25 -5.5 inch diameter face sampling hammer. Croesus – Undocumented details. Presumably industry standard at the time being 5.5inch face sampling hammers for RC and 4 inch diameter RAB holes. Delta - RC: 5.5 inch face sampling hammers. At times a stepped AC bit was used to drill through sand at beginning of hole and changed to face-sampling hammer when laterite encountered. HQ triple twin DD holes at Lizard. LZD1-3 was oriented. EGL - RC 5.25 inch diameter. Roper River Resources - RAB with blade and/or hammer bit. RC drilling with 5.25 inch diameter face sampling hammer. Monarch – RC drilling 5.5inch diameter with face sampling hammer. RAB 4 inch diameter blade with occasional hammer bit usage. AC details undocumented. SMC - AC, RAB, RC details undocumented. Presumably industry standard at the time being 5.5inch face sampling hammers for RC and 4

Criteria	JORC Code explanation	Commentary
		 inch diameter RAB holes. OBM – 5.25 to 5.5 inch diameter RC holes using face sampling hammer with samples collected under cone splitter. HQ and HQ3 coring to approx. 40m, then NQ2 to BOH. Metallurgical and geotechnical core holes drilled using HQ3 exclusively. All core oriented by reflex instrument.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Delta - Recoveries for resource RC drilling made as a subjective estimate. Recoveries in resource drilling were generally in excess of 70% (Iguana laterite), 60% (Iizard). Poor recoveries occurred outside mineralised zones. OBM - Diamond drill recoveries are recorded as a percentage calculated from measured core against downhole drilled intervals (core blocks). RC samples are weighed at the laboratory to monitor recoveries. Other operators have not captured recovery data. There is no known relationship between sample recovery and grade.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Aberfoyle – Logging on 1m basis. Qualitative, Lithology, Oxidation, grainsize. Quantitative: Quartz. Croesus – Qualitative: Lithology, colour, grainsize, alteration, oxidation, texture, structures, regolith. Quantitative: estimates are made of quartz veining. Delta - Qualitative: Lithology, colour, oxidation, structure, texture, alteration. Quantitative: estimates are made of quartz veining and minerals. EGL - Qualitative: alteration, colour, grain size, lithology, oxidation, mineralogy, structure, texture, vein style, vein assemblage, remarks. Quantitative: mineralisation intensity, vein percent. Roper River Resources - Qualitative: Colour, lithology, oxidation, BOCO, Texture, Alteration, minerals, sulphides. Quantitative: Quartz Monarch - Qualitative: Lithology, colour, oxidation, grainsize, texture, structure, hardness, regolith. Quantitative: estimates are made of quartz veining, sulphide percentages. SMC - Qualitative: Lithology, colour, oxidation, , alteration. Quantitative: estimates are made of quartz veining. OBM - Field logging was conducted using Geobank Mobile[™] software on Panasonic Toughbook CF-31 ruggedized laptop computers. Qualitative logging: Lithology, colour, oxidation, grainsize, texture, structure, hardness, regolith. Quantitative: estimates are made of quartz veining, sulphide and alteration percentages. Core photographed both wet and dry. Magnetic susceptibility and RQD were also recorded for core holes. All holes were geologically logged in their entirety to a level of detail to support mineral resource estimation.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Aberfoyle – Early (~1990) drilling 2m samples composited to 6m by undocumented method. Results returning >0.2g/t resampled on a 2m basis. Subsequent drilling: RAB/AC: 2m surface composites and 4m composites thereafter. RC: 1m samples riffle split and composited to 4m samples. Composites assays returning greater than 0.2g/t re-sampled on a metre basis. Croesus – RAB: Drill samples were collected in buckets below a free standing cyclone and laid out at one metre intervals in rows of tens adjacent to the drill collar. Composite analytical samples (~3.5kg) were initially collected over 5m intervals for each hole and a 1m bottom of hole analytical sample. Analytical composite samples were formed by taking a representative scoop through each one metre drill sample. Composite assays returning greater than 100pb Au were resampled on an individual basis by an undocumented method. RC drillsamples were riffle split at 1m intervals off the rig into calico bags whilst excess material was placed on the ground in 1m piles for logging. The analytical samples were dried, crushed and split to obtain a sample less than 3.5kg, and then fine pulverised prior to a 50gm sample being taken for analysis. Delta - RC samples collected on 1m intervals via a cyclone into green plastic bags. Each bag was riffle split if dry to a 2-3kg sample and retained on site. A PVC spear sample was taken from residues to create a 5m composite. If composites returned values >= 0.1g/t, geologically interesting or had elevated arsenic levels, the original 1m splits were collected and submitted. Original wet samples were split at this stage using wet triple riffle splitter, washed between samples. Wet samples were rare and usually outside of main mineralisation. RAB: Typically 1m samples were composited to 5m (occasionally 10m) by PVC spear.Significant assay results were re-

Criteria	JORC Code explanation	Commentary
		 submitted on a single metre basis. DD: Core was halved. Sample length typically 1m. EGL - RC samples riffle split into calico bags. Wet or moist samples are noted during sampling. Core was cut with diamond saw and half core sampled. All mineralized zones are sampled, including portions of visibly un mineralised hanging wall and footwall zones. Sample weights range from >1kg to 3.5kg. Samples weighed by laboratory, dried and split to <3kg if necessary and pulverized by LM-5. Field duplicates, blanks and standards were submitted for QAQC analysis. Roper River Resources - RAB and RC holes were composited to 6m and 4m respectively with anomalous zones of Ni or Au being resubmitted on a meter basis. Monarch - RAB: 2-4m composites scoop sampled. AC and RC 1m splits via riffle splitter. RAB samples were composited to 4m by scoop for initial analysis. Samples were collected at 1m intervals from the drill hole collar using a plastic bucket and laid on the ground. A scoop sample was taken from each sample to form 4m or 5m composite. AC: predominately 4m composite samples. Methods unknown. RAB samples were collected at 1m intervals from the drill hole collar using a plastic bucket and laid on the ground. A scoop sample was taken from each sample to form a 5m composite. AC: predominately 4m composite samples. Methods unknown. RAB samples were collected at 1m intervals from the drill hole collar using a plastic bucket and laid on the ground. A scoop samples of form the onsite drill sample piles. Half core samples, cut by saw. Core samples; RAB: predominately 5m composite samples speared from the onsite drill sample piles. Half core samples, cut by saw. Core sample intervals selected by geologist and defined by geological boundaries. For drilling up to April 2020, RC samples were re-sampled as 1m split samples and submitted to the lab for further analysis. Field duplicates, blanks and standards were submitted for QAQC analysis. Repeat assays were undertaken on pulp samples at the
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Aberfoyle – RC/RAB: composites assayed by aqua regia AAS. Composites returning >0.2-0.3g/t Au re-submitted as one metre samples by S0g charge Fire Assay. AC: composites by S0g charge Fire Assay. AC: composites by S0g charge Fire Assay. Composites returning >0.2-0.3g/t Au re-submitted as one metre samples for FA again. In areas of elevated graphite (Burke Dam), RC composites were assayed by 50g FA. Assayed at Genalysis. Croesus – 50g charge analysed for gold (Fire assay/ICP Optical Spectrometry) by Analabs Kalgoorlie for RC and Ultratrace Perth for RAB. Lab repeats at discretion of laboratory. Delta - RC and RAB. 5m composites dispatched to Genalysis and/or ALS laboratories Kalgoorlie for aqua regia with 50g charge with 0.01ppm detection limit. Composite assays returning values >= 0.1ppm Au, corresponding single metre samples were collected and despatched to ALS Kalgoorlie for 50gm charge fire assay with 0.01ppm detection limit. Standards of an undocumented provenance and locally (un-certified) sourced blanks inserted but frequency undocumented. 1 in 20 pulp duplicate frequency. Blind pulp re-assays performed. EGL - Samples were sent to Kalgoorlie kasay Laboratories to be analysed for gold by 40grm fire assay.Samples were also analysed at Genalysis. Certified reference material standards were submitted. Field duplicate samples taken at rate of 1:40. Roper River Resources - 25gm sample by aqua regia/AAS finish at MiniLab Kalgoorile. Lab repeats at discretion of laboratory. OBM – Up to April 2020, all samples were sent to an accredited laboratory (Nagrom Laboratories in Perth, Intertek-Genalysis in Kalgoorile or SGS in Kalgoorile. The samples have been analysed by firing a 50gm portion of the sample. This is the classical fire assay process and will give total separation of gold. An ICPOES finish is used. Commercially prepared standard samples and blanks are inserted in the sample stream at a rate of 1:12. Sizing results (percentage of pulverised sa

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Holes are not deliberately twinned. Delta drilled twinned holes at Lizard (LZD1-3). Monarch Gold Mining Company Ltd; Geological and sample data was logged digitally and .csv or .xls files imported into Datashed SQL database with in-built validation. Samples bags were put into numbered plastic bags and then cable tied. Samples collected daily from site by laboratory. EGL - Geological and sample data logged directly into field computer at the core yard using Field Marshall. Data is transferred to Perth via email and imported into Geobank SQL database by the database administrator (DBA). Assay files are received in .csv format and loaded directly into the database by the DBA. Hardcopy and/or digital copies of data are kept for reference if necessary. Data entry, verification and storage protocols for remaining operators is unknown. OBM - Geological and sample data logged directly into field computer at the drill rig or core yard using Field Marshall or Geobank Mobile. Data is transferred to Perth via email and imported into Geobank SQL database by the database by the database administrator (DBA). Assay files are received in .csv format and loaded directly into field computer at the drill rig or core yard using Field Marshall or Geobank Mobile. Data is transferred to Perth via email and imported into Geobank SQL database by the database administrator (DBA). Assay files are received in .csv format and loaded directly into the database by the DBA. Hardcopy and/or digital copies of data are kept for reference if necessary. Monarch Gold Mining Company Ltd; Geological and sample data was logged digitally and .csv or .xls files imported into Datashed SQL database with in-built validation. Samples bags were put into numbered plastic bags and then cable tied. Samples collected daily from site by laboratory. Data entry, verification and storage protocols for remaining operators is unknown. No adjustments have been made to
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Aberfoyle – All drilling is un-surveyed. Collars located on AMG Zone 51 Grid utilised. Croesus – TGRC holes were collar surveyed in AMG Zone 51 Grid. No downhole surveys. Delta - All drillholes used for resource definition surveyed by Minecomp. All post 1993 RC and DD holes downhole surveyed using EMS or Eastman single shot where possible. Where not possible, data from proximal holes was used. LAD and LZC, LZD, LAC, and selected G prefixed holes downhole surveyed by undocumented method approximately every 10m. Many RAB holes appear to be collar surveyed. AMG Zone 51 Grid utilised except for holes in the Nyborgs region were a local grid (Lady Ida) was utilised. EGL - Collars were surveyed by DGPS in MGA Zone 51. No downhole surveying performed. Roper River Resources - No surveys post drilling. AMG Zone 51 Grid utilised. Monarch - RC and some AC collars surveyed by DGPS. All remaining holes surveyed by GPS. MGA Zone 51 Grid utilised. IGRC holes were downhole surveyed by EMS every 5m. RC drilling was surveyed by Electronic Multishot on selected holes. SMC - No evidence of post drilling surveys, MGA Zone 51 Grid utilised. OBM (RC, DD) MGA94, zone 51. Drill hole collar positions were picked up by a contract surveyor using RTKGPS subsequent to drilling. Drill-hole, downhole surveys are recorded every 30m using a reflex digital downhole camera. Some RC holes not surveyed if holes short and/or drilling an early stage exploration project. Diamond drillholes completed in 2019 and 2020 by OBM were surveyed using a Gyro tool.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Exploration results are reported for single holes only. Data spacing highly variable from wide spaced ~800m x ~80m regional RAB to close spaced resource drilling ~10m x ~10m and grade control drilling at ~5m x ~5m. Drill hole spacing is adequate to establish geological and grade continuity for the deposits that currently have resources reported. Drill intercepts are length weighted, 0.5g/t lower cut-off, not top-cut, maximum 2m internal dilution.

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Deposits in the Lady Ida zone are generally oriented on North-Northwest to North West trends. Once the orientation of mineralisation was established drilling was mostly oriented towards 90° with Iguana grade control oriented towards 45°. Drilling of Laterite deposits is almost exclusively vertical in nature. It is unknown whether the orientation of sampling achieves unbiased sampling, though it is considered unlikely. OBM – RC drilling at Iguana is all inclined at between -50 and -60 degrees towards the east (90°). Mineralisation at Iguana is steep dipping to the south west.
Sample security	• The measures taken to ensure sample security.	 Unknown for all drilling except for the following; Monarch; Sample calicos were put into numbered plastic bags and cable tied. Any samples that going to SGS were collected daily by the lab. Samples sent to ALS were placed into sample crates and sent via courier on a weekly basis. EGL - Samples were bagged, tied and in a secure yard. Once submitted to the laboratories they are stored in cages within a secure fenced compound. Samples are tracked through the laboratory via their LIMS. OBM - Samples were bagged, tied and stored in a secure yard on site. Once submitted to the laboratories they are stored in cages within a secure within a secure fenced compound. Samples are tracked through the laboratory via their LIMS.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	OBM has reviewed historic digital data, particularly from Iguana deposit, and compared it to hardcopy and digital (including Wamex) records.

Section 1 Sampling Techniques and Data – Callion

Information for historical (Pre Ora Banda Mining Limited from 1980's to 2010) drilling and sampling has been extensively viewed and validated where possible. Information pertaining to historical QAQC procedures and data is incomplete but of a sufficient quality and detail to allow drilling and assay data to be used for resource estimations. Further Ora Banda Mining Limited has undertaken extensive infill and confirmation drilling which confirm historical drill results. Sections 1 and 2 describe the work undertaken by Ora Banda Mining Limited and only refer to historical information where appropriate and/or available.

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or 	 Centamin - 90 and 130mm AC, RC drilling with 1m sampling using ECM350 Crawlair and Schramm T64 drill rigs respectively. Individual or 2m composite samples were analysed by both aqua regia and fire assay of undocumented charge and laboratory. Consolidated Gold - 1m sampling from RC rig. Potential mineralisation assayed on a metre basis at 2-3kg target weight - otherwise as 4m composites. Composites returning significant results were re-submitted as individual metres. Samples were pulverised and a 50g charge for Fire Assay performed. Crest - 1 m sampling of RAB holes from which 4m composite samples were submitted from which a 50g charge was used for fire assay (NRAB holes) or aqua regia (CLN holes). Croesus - RC, RAB and AC 1m samples collected under cyclone. 5m composite samples were crushed, pulverised and assayed for gold by 50g Fire assay. HQ Diamond core was halved and sampled over the entire hole at 1m and 0.5m

Criteria	JORC Code explanation	Commentary
	 systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 intervals. Core samples were sent to Ultratrace Laboratories of Perth and analysed for Au, Pt and Pd by fire assay (Sogm charge). Delta - RC and RAB 5 metre composites for a 50g charge by aqua-regia analysis. 1m re-samples and NQ2 diamond tail core were milled and assayed by 50g charge fire assay. Eastern Goldfields Limited (EGS) - 1m RC samples using face sampling hammer with samples collected under cone splitter. 1m and 4m composite samples were dispatched for pulverising and 50g charge Fire Assay. Half core samples, cut by saw. Core sample intervals selected by geologist and defined by geological boundaries. Samples are crushed, pulverized and a 40g charge is analysed by Fire Assay. Lonestar - RC drilling. 1m sampling and logging. 3m composites or 1m samples were crushed, pulverised and analysed by Fire Assay. Lubbock - 1m RC drilling with composite samples of 2m in length and 1m in areas of quartz veining or areas of interest. Analysis by aqua regia with re-assays by fire assay at SGS Kalgoorlie or Comlabs. RC Laterite assaying by aqua regia only. RAB assay methods undocumented. Not all Diamond drilling details known but some were NQ and were cut and assayed by Fire Assay Monarch - RAB 2m-4m scoop composites and 1m intervals were despatched for analysis by aqua regia. Not all intervals were sampled. Ora Banda Mining Limited (OBM) - 1m RC samples using face sampling hammer with samples collected under a level cyclone / cone splitter configuration. Two split samples collected every metre. 1m and 4m composite samples were dispatched for pulverized and a 50g charge fire Assay. WMC - RAB drilling. 1m sampling, details undocumented
Drilling techniques	 Drill type (eg core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Centamin - Aircore 90mm and RC 130mm diameter holes (Conventional hammer) Consolidated Gold - RC Face sampling hammers. Undocumented diameter and bit size. Crest - RAB - details undocumented Croesus - Diamond holes HQ diameter. RC with 5.5 inch face sampling hammer and 4 inch RAB holes Delta - RAB and RC - details undocumented. NQ2 diamond tails Lonestar - RC drilling details undocumented. Presumably industry standard of 5.5 inch face sampling hammer. Lubbock - RAB, RC and Diamond details of which are undocumented for all types. Diamond drilling was of NQ diameter and included pre-collars and tails and wedges. Core was not oriented. Monarch - RAB samples were collected by Kennedy Drilling using a 4 inch blade. Ora Banda Mining Limited (OBM) - 5.5 - 5.625 inch diameter RC holes using face sampling hammer with samples collected under cone splitter. Core holes have RC pre-collars up to 150m depth, then NQ2 coring to BOH. All core oriented by reflex instrument. Eastern Goldfields Limited (EGS) - 5 inch diameter RC holes using face sampling hammer with samples collected under cone splitter. HQ3 coring to approx. 40m, then NQ2 to BOH. All core oriented by spear and/or reflex instrument WMC - RAB details undocumented
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias 	 Historic operators have not captured recovery data from RAB or RC drilling. Eastern Goldfields Limited (EGS) - Diamond drill recoveries are recorded as a percentage calculated from measured core against downhole drilled intervals (core blocks). Ora Banda Mining Limited (OBM) – RC drilling recoveries recorded on a pre metre basis based on sample size. Diamond drill recoveries are recorded as a percentage calculated from measured core against downhole drilled intervals (core blocks). Ora Banda Mining Limited (OBM) – RC drilling recoveries recorded on a pre metre basis based on sample size. Diamond drill recoveries are recorded as a percentage calculated from measured core against downhole drilled intervals (core blocks). There is no known relationship between sample recovery and grade.

Criteria	JORC Code explanation	Commentary
	may have occurred due to preferential loss/gain of fine/coarse material.	
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 In all cases, entire holes were geologically logged Centamin - Basic descriptive logging with quartz and weathering notations Consolidated Gold - Qualitative: Lithology, colour, Oxidation, alteration, sulphides, structure, moisture. Quantitative: logging applied to veining percentage Crest - Qualitative: Lithology, Colour, Oxidation, alteration, grainsize. Quantitative: logging applied to veining percentage Crosus - All DD holes photographed, geologically logged and geotechnical and magnetic susceptibility measurements were taken. Qualitative: Lithology, colour, grainsize, alteration, oxidation, texture, structures, regolith. Quantitative: Quartz veining Delta - Colour, oxidation, structural, lithology, alteration, veining, mineralogy Lonestar - Colour, oxidation, lithology, alteration, veining, minerals Lubbock - Logging of diamond holes was descriptive. Qualitative: Lithology, alteration, texture, structure, structure, minerals, grainsize. RC/RAB logging believed to have been done however documentation unavailable. Monarch - Qualitative: Regolith, Grain Size, Lithology, Colour, Texture, Structure, Oxidation, Alteration. Quantitative: Sulphide, Mineral, Veining Ora Banda Mining Limited (OBM)- Qualitative: Lithology, colour, oxidation, grainsize, texture, structure, hardness, regolith. Quantitative: estimates are made of quartz veining, sulphide and alteration percentages. Magnetic susceptibility recorded on a per metre basis in core holes. Core hole RQD logged. Core photographed wet and dry. Bulk density determination using Archimede's Principle is routinely undertaken using whole core segments. Eastern Goldfields Limited (EGS) - Qualitative: Lithology, colour, oxidation, grainsize, texture, structure, hardness, regolith. Quantitative: estimates are made of quartz veining, sulphide and alteration percentages. Core photographed. WMC - No details available
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 All laboratories performed repeats conducted at the discretion of the laboratory Centamin - Methods undocumented. Samples mostly submitted on 1m basis with limited 2m composites Consolidated Gold - RC: Riffle split to 2-3kg, residue placed in plastic bags. Intervals of prospective mineralisation or of geological interest were dispatched as individual metres with the remainder of the hole composited to 4m by undocumented method. RAB 4m composite samples using PVC spear. Both RC and RAB composites returning >0.19ppm or .24ppm for Callion holes re-submitted as 1m samples. Samples were dried the pulverised in Mixermill until 90% of sample is 106 microns or less. Duplicates at 1 in 20 frequency from residues submitted. Field duplicates submitted every 20th sample for RC, AC, and RAB Crest - All sub sampling techniques undocumented Croesus - 1m samples collected under cyclone. 5m comps, spear sampled with 50mm PVC pipe. Wet RC drill samples were thoroughly mixed in the sample retention bag and scoop sampled to form a composite sample. RAB and AC scoop samples taken from piles laid on ground. Five metre composite analytical samples, returning values greater than 0.1g/t gold, were riffle split (RC) or scoop (RAB,AC) at 1m intervals, where samples were dry, and grab sampled where wet. Diamond tails were cut to half core and sample based on geological boundaries and identified prospective zones. Samples size varied from 0.5m to1m. Core samples were sent to Ultratrace Laboratories of Perth The analytical samples. Samples were dried, crushed and split to obtain a sample less than 3.5kg, and then fine pulverised prior to a 50gm charge being collected and analysed. Delta - 5m composites by scoop re-submitted as 1m scoop samples if composite result >0.1ppm Au. Core was cut in half. Mixermill lab preparation. Duplicates submitted as 1m scoop samples of quartz veining. Splitting and compositing methods undocumented. RC laterite samplies and 3m composi

Criteria	JORC Code explanation	lanation Commentary					
Criteria Quality of assay data and laboratory tests	 JORC Code explanation The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Crommentary Ora Banda Mining Limited (OBM) – RC samples were submitted as individual 1m split samples (cone splitter) or composited to 4m by PVC spear. Half-core samples, cut by automated core saw. Core sample intervals selected by geologist and defined by geological and/or mineralisation boundaries. RC samples were dried, crushed, split, pulverised and a 50gm charge taken. Field duplicates, blanks and standards were submitted for QAQC analysis. Eastern Goldfields Limited (EGS) - Samples were composited to 4m by scoop or submitted as individual samples. Half core samples, cut by saw. Core sample intervals selected by geologist and defined by geological boundaries. RC samples were dried, crushed, split, pulverised and a 50gm charge taken. Field duplicates, blanks and standards were submitted for QAQC analysis. WMC - 1m sampling of chips by undocumented method Aqua regia is considered a partial technique whilst Fire Assay is considered total. Centamin - Both aqua regia and fire assay of unknown charge at AMDEL or Analabs Laboraties in Kalgoorlie. Standards supplied by Gannet Labs. Standard results falling outside 2 standard deviations queried and checked. MWRC holes showed variance with grade indicating possible coarse gold. Croesus - Analysis for gold (Fire assay/CP Optical Spectrometry) by Ultratrace Laboratory in Perth. Diamond core analysed for au, Pt and Pd by fire assay at Ultratrace Perth. Every 20th sample was duplicated in the field and submitted for analysis. Gannet standards and blank samples made by Croesus were submitted with split sample submitted for analysis. Genatysis Kalgoorlie or ALS Kalgoorlie. Core at ALS Kalgoorlie. Standards submitted for analysis. Genatysis Kalgoorlie or ALS Kalgoorlie. Core at ALS Kalgoolie. Standards submitted for analysis by ALS laboratories using original pulp residues Delta - Sm comps: Total mixer mill prep, Aqua-regia with 50g charge, 0.01ppm detection limit. 1m sa					
Verification of sampling	The verification of significant intersections by either independent or alternative company	 1 in 25 for RAB drilling (comps). Ora Banda Mining Limited (OBM) - Samples sent to Intertek, SGS and Nagrom laboratories. The samples have been analysed by firing a 50gm portion of the sample. This is the classical fire assay process and will give total separation of gold. An ICPOES finish is used. Commercially prepared standard samples and blanks are inserted in the sample stream at a rate of 1:20 for standards and 1:20 for blanks. Sizing results (percentage of pulverised sample passing a 75µm mesh) are undertaken on approximately 1 in 40 samples. Duplicate samples are taken in RC drillholes at a rate of approximately 1:30. The accuracy (standards) and precision (repeats) of assaying are acceptable. Eastern Goldfields Limited (EGS) – as per OBM WMC - No details found - DB states FA-AAS Twinned holes were not routinely used by previous operators. Monarch Gold Mining Company Ltd; Geological and sample data was logged digitally and .csv or .xls files imported into Datashed SQL 					
and assaying	<i>personnel.</i><i>The use of twinned holes.</i>	database with in-built validation. Samples bags were put into numbered plastic bags and then cable tied. Samples collected daily from site by laboratory					

Criteria	JORC Code explanation	Commentary
	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Eastern Goldfields Limited (EGS) - Geological and sample data logged directly into field computer at the core yard using Field Marshall. Data is transferred to Perth via email and imported into Geobank SQL database by the database administrator (DBA). Assay files are received in .csv format and loaded directly into the database by the DBA. Hardcopy and/or digital copies of data are kept for ref Ora Banda Mining Limited (OBM) - Geological and sample data logged directly into field computer (Panasonic Toughbook CF-31) at the core yard or at the drill rig using Geobank Mobile. Data is exported from the logging computer, copied onto the company servers and imported into Geobank SQL database by the database administrator (DBA). Assay files are received in .csv format and loaded directly into the database by the DBA. Hardcopy and/or digital copies of data are kept for reference if necessary.
		Data entry, verification and storage protocols for remaining operators is unknown.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Centamin – Accuracy of collars and downhole survey unknown. Collars located on Centamin local grid using theodolite and chain. Consolidated Gold - All collars surveyed by licensed surveyors to respective grids. CNRC holes used in Callion deposit resource were downhole surveyed with Eastman single shot using aluminium collar above hammer. Local grids with 2 point transformation to AMG84 zone 51 grid Crest - Collars were un-surveyed post drilling, located on AMG84 zone 51 grid Croesus - Majority of Croesus RC and DD holes were collar surveyed. An exception appears to be the TTRC holes. Local grid was used. Diamond and CNRC prefixed holes were downhole surveyed by EMS with readings every 5 to 10 metres. Delta - No holes appear to have been surveyed by collar or downhole. AMG84 zone 51 grid Lonestar - Collars were surveyed upon completion by an undocumented method. Glasson Local grid. Lubbock- Diamond holes down-hole surveyed every 24m by Eastman camera. Local grids originally utilised. Selected diamond holes were surveyed by EGL staff in MGA94 zone 51 grid using Trimble DGPS. Monarch - No RAB holes were surveyed post drilling MGA94 zone 51 grid used. No down hole surveys. Ora Banda Mining Limited (OBM) - MGA94, zone 51. Drill hole collar mark outs are conducted by surveying contractors using RTK GPS (sub-cm accuracy). Subsequent to drilling, holes are picked up using RTK GPS. Drill-hole downhole surveys are recorded every 18-30m using a reflex digital downhole camera (RC) or Gyro tool (DD). Eastern Goldfields Limited (EGS) - MGA94, zone 51. Drill hole collar positions are picked up using a Trimble DGPS subsequent to drilling. Drill-hole, downhole surveys are recorded every 30m using a reflex digital downhole surveys are recorded every 30m using a reflex digital downhole surveys are recorded every 18-30m using a nerflex digital downhole surveys are recorded every 30m using a reflex digit
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Historic data spacing highly variable from wide spaced ~800m x ~80m regional RAB to close spaced resource drilling ~20m x ~25m and grade control drilling at ~5m x ~5m. Drill hole spacing is adequate to establish geological and grade continuity for the Callion deposit. Drill intercepts are length weighted, 1g/t lower cut-off, no top-cut, maximum 2m internal dilution.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be 	 For most of the deposits in and around Callion the prevailing geological and structural trend is approx. North-South. Once the orientation of mineralisation was established drilling was mostly oriented between 255° and 270° or 75° and 80°. Holes were generally inclined between 50° and 65° for RC and DD. It is unknown whether the orientation of sampling achieves unbiased sampling, though it is considered unlikely.

Criteria	JORC Code explanation	Commentary
	assessed and reported if material.	
Sample security	• The measures taken to ensure sample security.	 Eastern Goldfields Limited (EGS) - Samples were bagged, tied and in a secure yard. Once submitted to the laboratories they are stored in cages within a secure fenced compound. Samples are tracked through the laboratory via their LIMS. Monarch - Pre-numbered sample bags were put into numbered plastic bags. These numbers were written on the submission forms which were checked by the geologist. Plastic bags were then securely cable tied and placed in a secure location. Samples were then picked up by the Lab in Kalgoorlie or deliver to Perth via courier. A work order conformation was emailed to Monarch personnel for each sample submission once samples were received by the Laboratory. Ora Banda Mining Limited (OBM) - Samples were collected on the day of drilling and bagged into cable tied polyweave bags. Polyweave bags are stored into bulka bags on pallets in a secure yard on-site. Once submitted to the laboratories they are stored in cages within a secure fenced compound. Samples are tracked through the laboratory via their LIMS. No documentation for other operators
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 OBM has reviewed historic digital data and compared it to hardcopy and digital (Wamex) records. No audits of sampling techniques have been done.

Section 1 Sampling Techniques and Data – Golden Eagle

Information for historical (Pre Ora Banda Mining Limited from 1980's to 2010) drilling and sampling has been extensively viewed and validated where possible. Information pertaining to historical QAQC procedures and data is incomplete but of a sufficient quality and detail to allow drilling and assay data to be used for resource estimations. Further Ora Banda Mining Limited has undertaken extensive infill and confirmation drilling which confirm historical drill results. Sections 1 and 2 describe the work undertaken by Ora Banda Mining Limited and only refer to historical information where appropriate and/or available.

Criteria	JORC Code explanation	Commentary
Sampling techniques	 channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold the base induces the public near the sume of the public near the public here there is coarse gold the public near the publ	 Aberfoyle/Bardoc - RC and RAB sampling methods generally unknown however usually collected as 1m samples and composited to 2 to 4m samples when outside mineralised zones. Pre-1990 RAB holes generally sampled on 2-3m intervals and composited to 6m. Samples sent to accredited laboratories for drying, crushing and pulverising. Usually 50g fire assay for RC samples and aqua regia or 50g fire assay for RAB samples. Consolidated Gold (Cons Gold) \ Consex- RC 1m samples where alteration is visible. Remainder of hole composited to 4m. 2 to 3 kg samples, including core, sent to laboratory for crushing, pulverising and 50g Fire Assay. Croesus - RC 1m samples collected under cyclone. 5m comps assayed for gold by 50g Fire assay. NQ diamond except for geotechnical purposes (HQ triple). Davyhurst Project Pty. Ltd (DPPL) - 4.25 to 5.5 inch RC drilling with face hammer. Potential mineralisation sampled and assayed on a metre basis otherwise 4m composites. Samples jaw crushed and pulverised before taking a 50gm charge for fire assay. Billiton - RAB and RC 1m samples with RAB being composited to 2m. Diamond core of NQ size. Laboratory and analysis methods unknown. Eastern Goldfields Limited (EGS) - Half core sample intervals selected by geologist and defined by geological boundaries. Samples are crushed, pulverized and a 50g charge is analysed by Fire Assay. Underground RC samples were taken every 1m and analysed as above. Eastern Goldfields Limited (EGS) - Face Samples The face dataset is channel sampling across the development drives. Each sample is a minimum of 1 kg in weight. Sample weights average 3-5kg depending on the sample length. Face sampling is conducted linear across the face at approximately 1.5 metres from the floor. The face is sampled from left to right in intervals no larger than 1.0 metre. Minimum ore sample width is 30 cm. The rore vein is determined by its general angle to north/(local grid no
Drilling techniques	 Drill type (eg core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Aberfoyle/Bardoc - RC, RAB and Diamond details unknown however NQ diamond known to be used. RC drilling between 4 and 6 inch diameter with use of face sampling hammer known from 1992 onwards. Cons Gold \Consex- NQ diamond and HQ (triple) for geotechnical holes. RAB and RC. 4.25 to 5.5 inch RC drilling with stabilisers and face sampling hammers. Croesus - Diamond holes NQ2 diameter. RC and RAB details unknown but assumed to be industry standard at the time being 5.5 inch face sampling hammers and 4 inch diameter respectively. DPPL - NQ core and HQ for geotechnical holes. RC drilling with stabilisers and face sampling hammers. EGL- For surface drilling, HQ3 coring to approx. 40m, then NQ2 to BOH. Underground diamond drilling is entirely NQ2. All core oriented by reflex instrument. Underground RC drilling was completed by a Cubex rig utilising a 104mm wide bit with a face sampling hammer. Billiton RAB and RC (Conventional hammer) diameter unknown with use of roller/blade and hammer. NQ Diamond known to be used. WMC - Conventional RC hammer, diameter unknown and RAB drilling details undocumented. SWAN - As for EGS OBM - As for EGS

Criteria	JORC Code explanation	Commentary	
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RC drill recoveries were not recorded by Aberfoyle/Bardoc, Consolidated Gold, Croesus, DPPL, WMC or EGL Billiton – Recoveries for some RC drilling programs were examined in 1986 but raw data not available EGL - Diamond drill recoveries are recorded as a percentage calculated from measured core against downhole drilled intervals (core blocks). Underground RC drill recoveries were monitored by the company's geologists and were deemed acceptable. It is unknown whether a relationship exists between sample recovery and grade or whether sample bias may have occurred. SWAN – As for EGS OBM – As for EGS 	
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Aberfoyle/Bardoc - Qualitative: lithology, colour, grainsize, structures, alteration. Quantitative: Quartz mineralisation Cons Gold/ DPPL - Qualitative: lithology, colour, oxidation, alteration, with grainsize, texture and structure often recorded in diamond drilling. Quantitative: Quartz veining. Core photographed. Logging entered directly into HPLX200 data loggers. Croesus - Most holes photographed, geologically logged and geotechnical and magnetic susceptibility measurements were taken. Qualitative: Lithology, colour, grainsize, alteration, oxidation, texture, structures, regolith. Quantitative: Quartz veining Billiton - Qualitative: lithology, colour, oxidation, grainsize, texture, structure, hardness, regolith. Quantitative: estimates are made of quartz veining, sulphide and alteration percentages. Core is photographed wet and dry. RC chip samples were collected and retained. All Face samples are logged using mine logging codes that are compatible with drilling codes WMC RC: Qualitative: Lithology, Colour, Grainsize, Alteration and oxidation SWAN – As for EGS OBM – As for EGS 	
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Aberfoyle/Bardoc – Diamond core sawn in half. RC and RAB samples with variable compositing lengths and often 1m samples. Method unknown before 1992, but thereafter riffle split to approximately 2kg samples. RC and RAB were usually prepared by single stage mixer and grind. Diamond, when known was jaw crushed and ring milled for a 50g charge fire assay. Sample duplicate studies undertaken at times, usually with good correlation Cons Gold \Conex- RC Samples collected via cyclone at 1m intervals and passed through 3 stage riffle splitter. A 2-3kg fraction was calico bagged for analysis, the residue collected in plastic bags and stored on site. Potentially mineralised zones were sampled at 1m intervals, the remainder composited to 4m by unknown method. Composite samples returning >0.19g/t were re submitted at 1m intervals. Samples underwent mixermill preparation (2-3kg) by Amdel Laboratories. RAB 4m composite samples using PVC spear. Samples returning >0.19g/t were re submitted at 1m intervals. Diamond drill samples were sawn into half core. One half was jaw crushed, then pulverised using a labtechnics mill. A quartz blank was pulverised between each sample to avoid contamination. Field duplicates from residues at 1 in 20 frequency submitted. Croesus RC/RAB - 1m samples collected under cyclone. 5m comps, spear sampled with 50mm PVC pipe. Wet RC drill samples were thoroughly mixed in the sample retention bag and scoop sampled to form a composite samples where dry, and grab sampled where wet. RAB 1m resampling method unknown. Samples were dried, crushed and split to obtain a sample less than 3.5kg, and then fine pulverised prior to a 50gm charge being collected and analysed. Every 20th sample was duplicated in the field and submitted for analysis. Diamond tails were cut to half core and sampled based on geological boundaries and identified prospective zones. Samples size varied from 0.2m to1m. Core samples were sent to Ultratrace Laboratories of Perth DP	

Criteria	JORC Code explanation	Commentary			
		 EGL – Core was cut with diamond saw and half core sampled. All mineralized zones are sampled, including portions of visibly un-mineralised hanging wall and footwall zones. Sample weights range from >1kg to 3.5kg. Samples weighed by laboratory, dried, crushed and split to <3kg if necessary before being pulverized. RC samples were cone split at the rig with 3kg duplicate samples retained, one of which was submitted for analysis. WMC - RC Sampling on 1m basis, methods undocumented. Assay by aqua regia method, unknown laboratory. SWAN – As for EGS OBM – As for EGS 			
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Aberfoyle/Bardoc – multiple analysis methods at Sheen, Amdel, Genalysis, Classic, Comlabs and Australian Laboratories. Usually 50g fire assay for RC and aqua regia or 50g fire assay for RAB. Quality control procedures unknown. Cons Gold/DPPL – RC and RAB - Mixermill prep with fire assay 50g charge at AMDEL, Minilab or Analabs Laboratories in Kalgoorlie. Half core was diamond sawn, jaw crushed, milled using LABTECHNICS mill at AMDEL for 50g charge by fire assay. Gannet standards submitted to monitor lab accuracy for infill resource drilling. Pulp umpire analysis was done but frequency unknown (1995). Screen fire assays of selected high grade samples. Quartz blanks submitted between each diamond sample Croesus - Samples analysed for Au by Fire Assay/ICPOES by Ultratrace in Perth. Gannet standards and blank samples made by Croesus were submitted with split sample submissions. QAQC analysis of repeats was analysed by Croesus Mining NL. for their drilling completed during 2000. EGL - samples sent to Intertek, SGS and Nagrom laboratories. The samples have been analysed by firing a 50gm portion of the sample. Lower sample weights may be employed for samples with very high sulphide and metal contents. This is the classical fire assay process and will give total separation of gold. An ICPOES finish was used. Commercially prepared standard samples and blanks are inserted in the sample stream at a rate of 1:10. Sizing results (percentage of pulverised sample passing a 75µm mesh) are undertaken on approximately 1 in 40 samples. The accuracy (standards) and precision (repeats) of assaying are acceptable. Billiton - Laboratory and methods unknown, Standards for RAB and RC inserted however frequency unknown. WMC drill samples were assayed by aqua regia method, unknown laboratory. SWAN – As for EGS OBM – As for EGS Fire Assay is considered a total technique, aqua regia is considered a partial technique. 			
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 EGL geologists have viewed selected diamond holes from certain deposits and verified the location of mineralised intervals. EGL - Geological and sample data logged directly into field computer at the core yard using Field Marshall. Data is transferred to Perth via email and imported into Geobank SQL database by the database administrator (DBA). Assay files are received in .csv format and loaded directly into the database by the DBA. Hardcopy and/or digital copies of data are kept for reference if necessary. SWAN – As for EGS OBM – As for EGS Holes have not been planned to specifically twin historic intercepts. No adjustments are made to any assay data. First gold assay is utilised for any reporting. Data entry, verification and storage protocols for remaining operators is unknown. 			
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 RAB and AC holes are/were not routinely collar surveyed or down-hole surveyed due to their limited use in resource estimation. To this end, discussion of RAB and AC drilling is omitted from this section. RC/GC (grade control) and shallow RC holes are/were not routinely down-hole surveyed due to their shallow nature reducing the chance of significant deviation. Barren exploration RC holes not routinely down-hole surveyed due to their surveyed. DD holes routinely collar and down-hole surveyed by most operators or have been re-surveyed by subsequent operators. The influence of magnetic rocks on the azimuths of magnetic down-hole surveys is minor. Early holes surveyed in AMG zone 51 and converted to MGA using Geobank and or Datashed data management software. Aberfoyle Bardoc (RC, RC/DD, DD) Various local grids which have undergone 2 point transformations. RC collars and down-hole surveys known to be surveyed at times, presumably when intersected anomalous gold. DD holes down-hole surveyed by Eastman single shot or Multishot 			

Criteria	JORC Code explanation	Commentary
		 Cons Gold/DPPL (RC, DD) Local grids and AMG84 zone 51 used. RC and DD Collars surveyed by licensed surveyors to respective grids. Holes of all types routinely collar surveyed whist RC resource holes routinely down-hole surveyed by various methods. BILLITON (RC, DD) Local Lights of Israel undergone 2 point transformation, unknown quality Croesus (RC, DD) Various local grids and AMG zone 51. RC, DD holes routinely collar surveyed and down-hole surveyed using Electronic Multishot (EMS) WMC (RC, DD) - Digital data provided by ConsGold. Downhole surveys when performed were by undocumented method with a 16m interval average. EGL (DD) MGA94, zone 51. Drill hole collar positions are picked up by mine surveyors using RTK GPS subsequent to drilling. Drill-hole, downhole surveys are recorded every 30m using a reflex digital down-hole camera. Underground DD and RC holes drilled in 2018 surveyed every 6m using a north-seeking gyro tool. SWAN – As for EGS OBM – As for EGS Face data is QAQC validated before importing into the main database (Geobank). The face data is visually inspected once plotted into a drillhole trace form. Survey pickups of development is used to determine coordinates of each face, along with sample locations. These coordinates are then used to generate a pseudo drill trace and sample intervals.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill hole spacing is adequate to establish geological and grade continuity for the Golden Eagle deposit which has a JORC (2004) compliant reported resource. Sample compositing has only been undertaken for resource modelling purposes. Drill intercepts are length weighted, 1g/t lower cut-off, not top-cut, maximum 2m internal dilution. Close spaced face samples (single line sample every 2.5 to 3.0m) and face and backs geological mapping provide detailed high density dataset to enable Grade Control models for mine planning.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Surface drilling is generally inclined at -60° to -75° in order to obtain oriented core. Azimuths and inclinations were determined to achieve optimum intersection with the mineralised lode. Underground drilling undertaken in fans as per industry standard to intersect lode from available drilling positions It is unknown whether the orientation of sampling achieves unbiased sampling, though it is considered unlikely. Face sampling is conducted as close to perpendicular to the ore body as possible.
Sample security	 The measures taken to ensure sample security. 	 Unknown for most operators. Cons Gold – RC residues stored onsite. EGL/SWAN/OBM – All samples, including face samples, are bagged, tied and placed in a secure yard. Once submitted to the laboratories they are stored in cages within a secure fenced compound. Samples are tracked through the laboratory via their LIMS. Samples are either driven to the laboratory directly by the geologist or field assistant or samples are dropped at the company owned mill (remote location) and picked up by the laboratory's personnel within the hour.

Criteria	JORC Code explanation	Commentary	
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	No audits of sampling techniques have undertaken to date.	

Section 2 Reporting of Exploration Results - Riverina Area

(Criteria listed in the preceding Riverina section also apply to this section.)

Criteria	JC	RC Code explanation	Со	mmentary			
Mineral tenement and land tenure status	•	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting	•	All tenure per TENEMENT M30/256	taining to this report is lis HOLDER CARNEGIE GOLD PTY LTD.	sted below AGREEMENTS	
		along with any known impediments to obtaining a licence to operate in the area.	• •	There are no l	l PTY LTD is a wholly own known heritage or native known impediments to o		
Exploration done by other parties	•	Acknowledgment and appraisal of exploration by other parties.	 Drilling, sampling and assay procedures and methods as stated in the database and confirmed from Wamex reports and hard copy records are considered acceptable and to industry standards of the time. The majority of resource drilling at the deposit, completed by Monarch gold was well executed and documented. 				
Geology	•	Deposit type, geological setting and style of mineralisation.	•	The geology of the Riverina area consists of a sequence of meta-basalts with minor meta-sediments and meta-ultramafics that have a northerly strike and sub-vertical to steep east dip. The area has been affected by upper greenschist to lower amphibolite grade metamorphism with many minerals exhibiting strong preferred orientations. All rock units are foliated with shear zones common. The most intense shear zones have been locally referred to as mylonite zones. Contemporaneous strike faults and late stage faults have dislocated these mylonite zones. Intense mineralisation and alteration at the Riverina underground mine is confined to the mylonite zones and strike fault systems. Gold mineralisation is intimately associated with quartz veining and sulphides within a broader mylonite zone that also contains non-mineralised parallel quartz veins. Elsewhere mineralisation is found in favourable host rocks where intersected by N-S trending strike faults. Favourable hosts include meta sediments, mafics and mafic/ultramafic contacts			
Drill hole Information	•	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	•	This information is excluded as this report pertains to a mineral resource estimation and individual drill results are not reported.			on and individual drill results are not

Criteria	JORC Code explanation	Commentary
	 dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Original assays are length weighted. Grades are not top cut. Lower cut off is nominally 1g/t. Maximum 2m internal dilution Metal equivalents not reported.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Intercept widths are down hole lengths. True widths are not reported given the varying orientation of drilling and mineralisation at the deposit. The geometry of the mineralisation at Riverina Mine is approx. N-S and sub vertical to steep east dippig. Drilling is oriented either east or west, perpendicular the strike of the mineralisation.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	See Plans and sections
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 If reported the location of drill hole intersections is shown on the plans and 3D diagrams and are coloured according to grade to provide context for the highlighted intercepts
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 There is a current DMP approval for mining at Riverina. This was applied for and granted to previous operator, Monarch Gold. There are no known metallurgical issues for Riverina ores.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step- out drilling). Diagrams clearly highlighting the areas of possible 	 Infill and extensional drilling at Riverina. Metallurgical and Geotechnical drilling Mining appraisal studies

Criteria	JORC Code explanation	Commentary		
	extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Assessment of all regional data to develop new exploration targets.		

Section 2 Reporting of Exploration Results – Missouri & Sand King

(Criteria listed in the preceding Missouri & Sand King section also apply to this section.)

Criteria	JORC Code explanation	Commentary					
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, 		 Sand King deposit is on Tenement M24/290 held by Siberia Mining Corporation Pty. Ltd., a wholly owned subsidiary of Ora Banda Mining. The tenement is in good standing. There are no heritage issues. 				
status	 native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting 		TENEME	HOLDER	AGREEMENTS		
	along with any known impediments to obtaining a licence to operate in the area.		M24/029 0	SIBERIA MINING CORPORATIO	M24/290 - SIBERIA GRANTED GARDNER THE RIGHT TO EXPLORE FOR NICKEL MINERALS ON N ROB MITCHELL AND HANK SHRERS (SURFACE ALLUVIAL RIGHTS TO 2M DEPTH)		
				N PTY LTD	M24/0352 - ROB MITCHELL AND HANK SHRERS (SURFACE ALLUVIAL RIGHTS TO 2M DEPTH)		
				i heritage issues known impedime	nts to operating in the area.		
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Drilling on the tenements was completed by numerous operators, but the majority of work was completed by WMC, Gilt Edged Mining, Siberia Mining Corporation, Monarch Gold and EGS/OBM. All work by these companies was to industry standards of the time. 					
Geology	 Deposit type, geological setting and style of mineralisation. 	 Sand King is an orogenic lode style deposit hosted by mafic rocks, predominantly basalt Gold mineralisation at Sand King takes the form of stacked quartz-biotite-feldspar-sulphide shear lodes within the basalt. Widths vary from sub 1m to ~ 6m true width. Mineralised structures are NE-SW striking in the south and normally steeply dipping (~80 degrees) to the north west while in the north-eastern end of the deposit mineralisation is interpreted to dip shallower to the north (~60 degrees) 					
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	•	The significa intercepted number of h intercepts.	a lode position w oles in the projec	ppendix 1 e provides details of drill holes with intercepts of >= 1 gram metres, In cases where drilling has ith grades below this value, NSI (no significant intercept) is listed. This provides context to the t area with significant gold intercepts versus the number of holes with lesser or no significant cant Intercepts table are all down hole lengths.		
	 If the exclusion of this information is justified on the basis that the information is not Material and this exclusion 						

Criteria	JORC Code explanation	Commentary
	does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Original assays are length weighted. Grades are not top cut. Lower cut off is nominally 0.5g/t. Maximum 2m internal dilution. No metal equivalents reported
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Drilling is predominantly angled at -60° to the south, optimally intersecting the steep north dipping mineralisation. This drill orientation does not intersect all lodes at optimal angles and as such some drill intercepts are longer than true widths. All intercept widths reported are down hole lengths. The geometry of mineralisation is known for the Sand King deposit. However, no attempt has been made to report true widths. Drilling from the recent program required shallow angle (~30°) diamond drilling to hit specific targets within the constraints of existing mining infrastructure (existing pit and dumps)
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	See plans and sections.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All drill intercepts from recent drilling are reported. Results reported include both low and high gram metre (g/t x down hole length) values. No holes returned NSU (no significant intercept)
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Metallurgical and geotechnical work has been completed for Sand King deposit in the past. Additional metallurgical, geotechnical, environmental and engineering work has been or is in the process of being completed for Sand King deposit.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale stepout drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Mining Studies for inclusion in DFS Statutory approvals for mining Sand King are in progress. Cross over studies to quantify the underground mining potential of the deposit

Section 2 Reporting of Exploration Results – Waihi

(Criteria listed in the preceding Golden Eagle section also apply to this section.)

Criteria	JORC Code explanation	Сс	ommentary				
Mineral tenement	Type, reference name/number, location and ownership including agroements or material issues with third particles	•		ertaining to this report is liste			1
and land tenure status	including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties,		TENEMENT	HOLDER	Expiry Date	AGREEMENTS	
514145	native title interests, historical sites, wilderness or national park and environmental settings.		M30/255	CARNEGIE GOLD PTY LTD.	10/01/2038	Nil	
	 The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the greg 	•	There are no	d PTY LTD is a wholly owned s known heritage or native title known impediments to obtai	e issues.		
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	•	Corporation (300,000 tonn Eagle and Wa Exploration th the same tim the ore 80 km Gold NL (CGN consolidation including the upgraded to 3 acquired the until 2005. In project until 2	WMC) and Hill Minerals pegg e per annum carbon-in-pulp ihi. In 1988 WMC's and Jones nen developed open cut mine e Aberfoyle Resources / Hill M n to the Bardoc processing pla IL) and commenced tenemen of holdings in the district. In Bardoc Processing plant, in a 1.2 Mt/y. In October 1998 Da project. In 2000, Croesus Min January 2006, Monarch Gold 2008.	ed claims surro (CIP) treatment s Mining's asset: es at Great Ophi Ainerals comme ant. During 1995 t acquisition and December 199 n equity transac vyhurst Project ning NL ("Croesu I Mining Compa	unding the historic D plant at Davyhurst a s were acquired by C r, Lady Eileen, Lady E nced open-pit minin 6/96 Consolidated Ex d exploration activiti 6 CGNL acquired the ttion. The Bardoc pla Pty Ltd (DPPL), a sub us") acquired the Dav ny Limited (Monarch	mpanies, Jones Mining, Western Mining Davyhurst sites. In 1986, WMC established a nd commenced open pit mining at Golden Consolidated Exploration Ltd. Consolidated Eileen South and Homeward Bound. At about ag at the Lights of Israel Deposit and trucked eploration Ltd. restructured as Consolidated es in the area. This resulted in the assets of Aberfoyle Resources in the area, ant was relocated to the Davyhurst site and isidiary of NM Rothschild and Sons (Australia), vyhurst Project and continued operations acquired Davyhurst and operated the
		•	hard copy rec drilling, samp previous oper	ords are considered acceptal ling and assay methodologies rators completed work to sta	ole and to indus s for the majorit ndards consider	try standards of the y of drilling in the W ed acceptable for th	e and confirmed from Wamex reports and time. There is sufficient understanding of 'aihi area. The company is confident that e time. As part of each resource upgrade, of mineralisation at each deposit.
Geology	 Deposit type, geological setting and style of mineralisation. 	•	Regional Gec Coolgardie Do by the upper ultramafic-ma area can be o distinguished strain part of pumpellyite t massive and upper amphi granitoid terr rely on miner of deposits, the	logy - Rocks of the Coolgard omain are not well exposed at part of the stratigraphic se afic sills of the Ora Banda Do lassified by magnetic signatu 'static style' and 'dynamic st the greenstone regions aw o upper greenschist facies). S competent rocks. Dynamic-s bolite facies) and are chara- ains. There appears to be two alisation taking place during the early shears are modera- early shear is steeply west dip	ie domain (Kalg t Davyhurst and equence, namel main do not oc re into three ty tyle' regional m ay from the gra strain is concent tyle areas of gr cterized by mo o major controls reactivation of e tely to gently w oping. In the nor	oorlie Terrane) are the distribution of ro y basalts, felsic volo cur in the Coolgardie pes: low, medium ar etamorphism. Static nitoids and typically rated in narrow zone eenstone have highe re pervasive foliatio on mineralisation in earlier ductile shear yest dipping, wherea thern portion of the f	prevalent in the Davyhurst area. Rocks of the ock types suggests that it is mainly represented canics and sedimentary rocks. The abundant e Domain. Granitoids in the Davyhurst Project and high magnetic response. Binns et al. (1976) style areas generally occupy the central, low- γ have lower metamorphic grades (prehnite- es so that textures are well preserved in more er metamorphic grades (upper greenschist to in, particularly along the contacts with large the Davyhurst area. Both mineralisation styles zones. In the case of the Lights of Israel group as in the Federal Flag – Lady Eileen group of Davyhurst tenements most gold mineralisation mineralised corridors is mostly steep (>75°) E-

Criteria	JORC Code explanation	Commentary
		 or W-dipping with moderate to steep (~60⁹) and shallow-dipping (~15⁹) ore zones at the Federal Flag and Lady Gladys deposits, respectively. Within these planar corridors of mineralisation linear trends to gold distribution are mostly shallowly plunging. Internal variations within the corridors at individual deposits are common and discussed later. Mineralisation at the Lights of Israel and Makai deposits differs from the other examined deposits in that mineralisation has a linear form that plunges moderately (~20⁹) to the NNW. Local Geology - The two major rock types within the Waihi deposit are: Tremolite/Actinolite/Chlorite Amphibolite. Weakly to strongly foliated, fine to medium grained rocks composed of tremolite/actinolite within a fibrous Mg chlorite matrix. High Mg Basalt Fine Grained Basalt. Massive to weakly foliated, very fine grained rock composed of actinolite and plagioclase (albite) with trace magnetite. Tholeiitic basalt Late stage lepidolite bearing pegmatite dykes striking 060° and dipping steeply 75° north cut across the stratigraphy at several places. A quartz felspar porphyry sub parallel to regional foliation has been mapped in the old Homeward Bound pit. Detailed mapping by ConsGold of the Waihi and Homeward Bound pits shows the area is dominated by a strong penetrative foliation striking 347° and dipping 75° to 80° west. A second weaker foliation arking basalts. Mineralisation is characterised by multiple loads and broad alteration haloes. Mineralisation also appears to have a moderate northerly plunge of approximately 40° toward 340°. Folding is common at Waihi and numerous folds and re-folded folds are noted in pit and in in drill core. Fold hinges have a coasistent ~40° plunge to the north. Within the deposit there is a pervasive biotite alteration halos. Associated with gold mineralisation, biotite plus silica and quartz veining occur. Higher grade gold mineralisation is generally associated with gold mineralisation, biotite plus sili
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is 	 Individual drill intercepts are previously reported. For previous announcements relating to Waihi please refer to ASX announcement dated 22 February 2017, 29 July 2019, 14 October 2019, 6 November 2019, 22 November 2019, 24 December 2019, 21 January 2020 Any widths reported in a Significant Intercepts table are all down hole lengths.

Criteria	JORC Code explanation	Commentary
	the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Original assays are length weighted. For reporting exploration results grades are not top cut. Lower cut off is nominally 0.5g/t. Maximum 2m internal dilution. No metal equivalents reported
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Intercept widths are down hole lengths. True widths are not reported given the varying orientation of drilling and mineralisation at each deposit/prospect mentioned in the report.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	See plans and sections provided within this announcement.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Results reported include both low and high gram metre (g/t x down hole length) values. The significant intercept table (previously reported – see references in Section on Drill hole Information) provides details of drill hole intercepts shown on diagrams. There is no lower cut-off grade, the holes listed include those with NSI (no significant intercept). Holes in the significant intercept table are shown on diagrams coloured according to gram metre grade bins. This provides spatial context to the number of holes in the project area with significant gold intercepts versus the number of holes with lesser or no significant intercepts
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Metallurgical and geotechnical work has been completed for numerous previously mined deposits, including Waihi. Waihi deposit was previously mined and processed at Davyhurst plant with no known metallurgical issues. Ongoing geological/ structural evaluation to determine the controls on mineralisation New metallurgical holes from Waihi have been drilled and are being tested. Results are pending. Geotechnical holes have been planned, drilling to commence soon.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step- out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not 	 Data evaluation and geological assessment of all deposits, including Waihi, will be followed by additional resource drilling and updated JORC 2012 compliant Mineral Resources. Local exploration targeting extensions to the south and east of Waihi are proposed.

Criteria	JORC Code explanation	Commentary
	commercially sensitive.	

Section 2 Reporting of Exploration Results - Iguana

(Criteria listed in the preceding Riverina section also apply to this section.)

Criteria	JO	PRC Code explanation	Commen	tary		
Mineral tenement	•	Type, reference name/number, location and	All ten	ure pertaining to this report is listed be	elow:	_
and land tenure		ownership including agreements or material issues with third parties such as joint ventures,	TENEMENT	HOLDER	Expiry/Death Date	
status		partnerships, overriding royalties, native title interests, historical sites, wilderness or	E16/474, E16/475, M16/268	CARNEGIE GOLD PTY LTD.	26/1/2022 4/10/2025 9/08/2022	
	 national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	E16/344, E16/456, M16/262, M16/263, M16/264,	SIBERIA MINING CORPORATION PTY LTD	28/4/2022 10/07/2024 11/3/2041 11/3/2041 11/3/2041		
			There a	are no known heritage or native title is	y LTD are wholly owned subsidiaries of OBM. sues. o Application for Forfeiture proceedings filed 09/05/201:	1.
Exploration done by other parties	•	Acknowledgment and appraisal of exploration by other parties.	are cor method conside	isidered acceptable and to industry sta dologies for the majority of drilling in t	nethods as stated in the database and confirmed from Wa ndards of the time. There is sufficient understanding of dr ne Lady Ida area. OBM is confident that previous operato f any resource upgrade, OBM will commit to additional d	illing, sampling and assay rs completed work to standards
Geology	•	Deposit type, geological setting and style of mineralisation.	batholi Provinc tremoli the Ida Lizard a the are • The res of lowe control	thic granites and subordinate basalt a ce (EGP). The EGP sequences are meta ite-chlorite rich ultramafics and psamr Fault, and the regional dip is sub-verti and broad zones of anomalous soil geo (a, including inferred thrusts, fault spla source at Iguana is dominantly hosted er to mid amphibolite facies. Mineralis led by imbricate thrusts contained be	e of the Ida Fault, a north-south trending deep seated cru nd BIF of the Southern Cross Province against greenstone morphosed to amphibolite facies and dominated by thole nitic to pelitic sediments. The regional stratigraphy trend cal. Fluid pathways are suggested by the presence of two chemistry along the length of the Python and Reptile Shei ys and crosscutting shears, presents good potential for a in a highly sheared, silica-muscovite-carbonate altered, t ation is intimately associated with pyrite and arsenopyrit tween two north-south trending faults. Ultramafic units I ion pegmatite dykes attain considerable thickness in place	es of the Eastern Goldfields eiitic to komatiitic basalts, s north-northwest, sub-parallel to resources defined at Iguana and ars. The structural complexity of dditional trap sites. holeiitic metabasalt and sediments e. It is interpreted as being ie to the west and east of the

Criteria	JORC Code explanation	Commentary
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure 	 See list of drill intercepts. Original assays are length weighted. Grades are not top cut. Lower cut off is nominally 0.5g/t. Maximum 2m internal dilution. Metal equivalents not reported.
	 used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	
Relationship between mineralisation widths and	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its pattern chould be reported. 	 Intercept widths are down hole lengths. True widths are not reported given the varying orientation of drilling and mineralisation at each deposit/prospect mentioned in the report. The geometry of the mineralisation at Iguana is approx. NW-SE and steep SW dipping. Drilling is dominantly oriented E-W which is not optimal, though adequate for the strike of mineralisation.
intercept lengths	 nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being 	See plans and cross-sections.

Criteria	JORC Code explanation	Commentary
	reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 The location of drill hole intersections is shown on the plans and 2D/3D diagrams and are coloured according to grade to provide context for the highlighted intercepts.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Iguana has no known reported metallurgical issues. Primary ore was previously mined by Delta in early 2000's with ore treated at Greenfields processing plant in Coolgardie. Reconciliation figures are unknown. As part of ongoing resource development activities, a comprehensive program of metallurgical drilling will be undertaken.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Additional drilling followed by resource estimation at Iguana. Assessment of all regional data to develop new exploration targets.

Section 2 Reporting of Exploration Results – Callion

(Criteria listed in the preceding Golden Eagle section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Callion deposit is located on M30/103 M30/103 is held by Carnegie Gold Pty ltd, a wholly owned subsidiary of Ora Banda Mining Limited Pursuant to the Crown Diamonds Royalty Agreement, a royalty is payable on all material mined and processed from M30/103 of: \$1.00 per tonne if the grade is equal to or less than 3.0 grams per tonne; \$2.50 per tonne if the grade is greater than 3.0 grams per tonne but equal to or less than 4 grams per tonne; \$4.00 per tonne if the grade is greater than 4.0 grams per tonne; and \$5.50 per tonne if the grade is greater than 7.0 grams per tonne and the ore is extracted by underground operations.

Criteria	JORC Code explanation	Commentary
		 The royalty was payable severally 60/40 to two parties but the Company's predecessor in title acquired the 60% royalty entitlement under a buy-back arrangement. The Company remains liable to pay 40% of the royalty to Crown Diamonds Pty Ltd. There are no known heritage or native title issues.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Drilling, sampling and assay procedures and methods as stated in the database and confirmed from Wamex reports and hard copy records are considered acceptable and to industry standards of the time. There is sufficient understanding of drilling, sampling and assay methodologies for the majority of drilling in the Callion area. The company is confident that previous operators completed work to standards considered acceptable for the time. As part of each resource upgrade, Ora Banda Mining Ltd will commit to additional drilling to confirm the style, widths and tenor of mineralisation at each deposit.
Geology	Deposit type, geological setting and style of mineralisation.	 Callion lies in the Barlee Terrain, West of the Ida Fault. The Mount Ida Greenstone Belt of the Barlee Terrane in the Callion area is described by Wyche & Witt (1994), as an east-dipping sequence of tholeiitic basalt and dolerite intercalated with several BIF and shale units in the east. The westernmost, and presumably the lowermost (as facing is indeterminate), rock type mapped in the area is a +700m thick sequence of sandstone, wacke, shale, chert and banded iron formation (herein termed BIF), interleaved with several sills of dolerite and gabbro. The chert and BIF units define a prominent range of hills, whereas the sandstone and shale units, together with the mafic sills are recessive features. The BIF units become more cherty and less magnetic towards the east. These rocks are overlain by a ~100m thick sequence of thinly bedded shale, siltstone and fine grained sandstone with thin interbeds of chert. Bedding in the BIF's generally dips at 45° to the east, although it can range between 25° and 75°. The BIF's and cherts become progressively higher metamorphic grade in a northward direction (i.e. along strike). Overlying the fine grained sediments is a 250-600m thick composite dolerite and gabbro sill that is thickest in the centre of the area and thinnest at the southern limit of the mapping. To aid description this sill is herein termed the Lady Mary Sill. East of the Lady Mary Sill is a ~1500m thick pile of basalt. Intruded into the basalt is ~1000m of dolerite spread over two dozen discrete sills ranging from 20m to 200m thick. The intrusions are generally conformable with the Lady Mary Sill to the west, although the dolerite intrusions do strike N-S along the eastern flank of the eastern boundary of the mapped area was arbitrary; however a strong shear zone is present on the eastern flank of the easternboundary of the mapped area was arbitrary; however astrog shear zone is gressint of the CayNury tare is described by Wyche & Witt (1994) as being low pressure and moderate to high temperature midd
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea 	 Individual drill intercepts previously reported. For previous announcements relating to Callion please refer to ASX announcement dated 24 November 2016, 10 January 2017, 20 February 2017, 31 August 2017, 28 January 2020, 3 March 2020, 30 April 2020. Any widths reported in a Significant Intercepts table are all down hole lengths.

Criteria	JORC Code explanation	Commentary
	 level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Original assays are length weighted. For reporting exploration results grades are not top cut. Lower cut off is nominally 0.5g/t. Maximum 2m internal dilution. No metal equivalents reported.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 All intercept widths reported are down hole lengths. No attempt has been made here to report true widths. Generally, resource drilling was drilled at orientations perpendicular to the established trend of mineralisation.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to diagrams in release.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Results reported include both low and high gram metre (g/t x down hole length) values. The significant intercept table (previously reported – see references in Section on Drill Hole Information) provides details of drill hole intercepts shown on diagrams. There is no lower cut-off grade, the holes listed include those with NSI (no significant intercept). Holes in the significant intercept table are shown on diagrams coloured according to gram metre grade bins. This provides spatial context to the number of holes in the project area with significant gold intercepts versus the number of holes with lesser or no significant intercepts.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Callion deposit was previously mined and processed at Davyhurst plant with no known metallurgical issues. New metallurgical holes from Callion have been drilled and are currently being tested. Results are pending. New geotechnical holes at Callion have been drilled with results currently being reviewed by external geotechnical consultants. All exploration data believed to be meaningful and material to this release has been included.

Criteria	JORC Code explanation	Commentary
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step- out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further data evaluation and geological assessment of drilling conducted at the Callion deposit. Metallurgical and geotechnical studies are ongoing.

Section 2 Reporting of Exploration Results – Golden Eagle

(Criteria listed in the preceding Golden Eagle section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 All current drilling by EGL is located on tenement M30/255. M30/255 is held by Carnegie Gold PTY LTD, a wholly owned subsidiary of Eastern Goldfields LTD. (EGL) The tenement is not subject to joint ventures, partnerships or 3rd party royalties. There are no known heritage or native title issues. There are no known impediments to obtaining a licence to operate in the area. M30/255 is currently under plaint from a 3rd party.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 The deposit was originally discovered in the early 1900's. WMC developed an open pit at the Golden Eagle deposit in 1986 and was previously last mined by Croesus in 2005. The Golden Eagle deposit occurs within a regionally extensive amphibolite unit which also hosts a number of other gold deposits at the Davyhurst Project (LOI, etc). The Gold mineralisation occurs within steeply west dipping shear zones, comprising strongly foliated biotite-quartz schist, with localised quartz-feldspar lode (QFL), and disseminated and banded sulfides (py, po). The ore structure is characterised by biotite alteration which contrasts from surrounding waste rock which is characterised by Chloritic alteration. All companies listed conducted multiple drilling programs and produced several reports on the deposit in their time.
Geology	Deposit type, geological setting and style of mineralisation.	 The LOI & Makai, Golden Eagle Deposits and Great Ophir are hosted within approximate 30-50 metres wide biotite schist that frequently contains a silica dominant Quartz-feldspar lode (QFL) situated near the base of the schist. Historically this biotite schist has been defined as metamorphosed inter-flow laminated meta-sediment of siliceous, calc-silicate and pelitic compositions (Amdel, May 1993) while the QFL is interpreted to originally have been a laminated silica rich sediment, although this assessment has been made on overall composition as no relict features remain. The surrounded rocks are predominately high-Mg basalt that along with the interflow sediment have undergone Amphibolite

Criteria	JORC Code explanation	Commentary
		 grade metamorphism. These units are bound to the east and west by large scale faults. These deposits appear to have formed along the intersection of the biotite schist and a shallow NE dipping fault with the development of plunging shoots of (-20° -> 357°) within the biotite schist at LOI and Golden Eagle.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Refer to Appendix 1 for additional information.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No upper cut applied to reported drill hole results, significant intersections are reported as weighted averages, greater than 1g/t, 2m maximum internal waste, The mineralisation in the Lights of Israel Complex and Golden Eagle is hosted by broad biotite schist with a high grade Quartz Feldspar Lode (QFL) located at the base of the schist. When present the QFL has been used to define the edge of high grade mineralised intercepts, where done this is clearly labelled. No upper cut applied to reported face sample results, significant intersections are reported as weighted averages, greater than 2.5g/t and no more than 1metre of internal dilution.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 All intercept lengths reported are downhole lengths, not true widths. The majority of the reported historical surface drilling at Golden Eagle was inclined (generally -60°), with steep dipping mineralisation, this results in intersection angles of between 40 and 60 degrees, as such downhole intercepts are 15-35% wider than true width. Face samples are taken normal to the strike of the orebody, hence can be considered true width.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to diagrams in release
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	• The LOI Complex, including Golden Eagle, has undergone significant drilling over the years and as such reporting of all results is not practicable. Results that have been deemed to bear influence on the new EGS results have been reported in this announcement to ensure representivity of the results.

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	All exploration data believed to be meaningful and material to this release has been included
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale stepout drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	• Additional drilling from underground positions is planned for Golden Eagle, as mentioned in the text of this announcement.

Section 3 Estimation and Reporting of Mineral Resources - Riverina

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Data from EGL/OBM drilling captured into Field Marshall logging software. Data sent from site and imported into SQL database via DBMS. Validation checks in SQL database ensure data integrity is not compromised. The data is verified by company geologists before being sent to the DBA for validation or passing Geobank Software validation protocols Historic data has been verified by checking historical reports on the project. The Competent Person has undertaken a number of validation checks on the database, using Micromine software which include, but are not limited to, checks for overlapping intervals, checks for missing data/records, visual checks on drill hole locations and traces to identify any possible survey issues. No major issues were detected
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	Numerous site visits completed to: View geology in existing open pit View drilling operations Ensure there are no impediments to development
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 Mineralised structures are roughly N-S striking, sub-vertical to steeply east dipping. The main lodes have been previously mined and are sub-vertical. Late stage E-W structures are mapped in the underground workings and would extend east towards the central and East lodes. Minor sinistral offsets of up to 5m are noted in underground workings. These would similarly affect the central and east mineralisation but were not accounted for in the interpretation due to difficulties in defining their location with the available drill spacing. Structural date from OBM drilling was used to guide the orientation of mineralised lodes where possible. Inspection of core and ore shows the mineralisation to be associated with silica sericite alteration and quartz-carbonate veining. Resource interpretations are guided by presence and intensity of veining and/or alteration noted in logging. Geological continuity of N-S strictures are well defined, although sometimes terminate abruptly, possibly due to the minor

Criteria	JORC Code explanation	Commentary
		 offsets caused by the E-W structures. The main lodes at Riverina are geologically continuous over 1km and limited only by drilling depth. Mineralisation is also locally stoped by intruding pegmatite dykes, the location of which are well understood.
Dimensions	• The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	 The main lodes at Riverina are geologically continuous over 1km in a N-S direction and defined to a depth of 240m below surface. The central Murchison and East (Reggie) lodes extend for a similar strike length but are not as depth extensive. The deposit extends for 320m in an E-W direction
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions if or using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 Open Pit - Interpolation was done using Ordinary Kriging (OK) into a 3D block model. Underground - A 2-dimensional estimation technique was adopted where the lodes are projected on to a nominal 2D onthing- elevation plane for estimation. Accumulation and Horizontal Width variables are estimated into a 2-Dimensional block Model and the Au grades is back calculated (Au grade = Accumulation / Horizontal Width). Open Pit - Im composite samples coded to the mineralised domains were used as inputs to estimation. Only RC (including RC grade control) and diamond drilling samples used for estimation. Underground - Full width composite samples were digitised on-screen. Composites have different lengths and are therefore at different supports and said to be non-additive and unsuited for ordinary kriging. When grades a weighted by the sample widths they become additive, hence requirement to estimate Accumulation (Grade⁴Width) and the Horizontal Width. Composites digitised to "14ft cut-off, supported by geology. Internal dilution included if bounded by samples with significant gold grade. Horizontal Width of each full width composite is calculated trigonometrically using formulas in Microsoft ExcelTM, from the drill hole dip and dip directions and the orebody dip and dip directions. Open PIt - OK was used to estimate gold grades into a 3-dimensional block model. Estimation parameters derived from modelled semi-variograms. Micromine^{1M} Software was used for the OK estimation. Underground - Ordinary Kriging (OK) was used to estimate Accumulation and Horizontal Widths into a 2D block model (single block in the E 2D north-Evention plane. Cere U arisofts was completed in the 2D plane. Semi variogram parameters defined from the Accumulation variable were applied to the Horizontal Width as the two variables were positively correlated. MicromineTM software was used for the Horizontal Width as the two variables were gostively correlated. MicromineTM sof

Criteria	JORC Code explanation	Commentary
		 Underground - Estimation completed in 3 runs each with less restrictive search, and minimum sample parameters. The initial interpolation pass was used with a maximum range less than the range of the principal direction of the modelled variograms. Maximum number of samples was 20, minimum was 4. A four sector search was applied to maximise sample representivity in all directions. Range increased progressively and minimum number of samples required reduced for each subsequent run. Estimates were transformed back to real space from the 2D plane. No estimation of deleterious elements was carried out. Only Au was interpolated into the block model. Previous resource estimates have been completed in 2020 and 2021 No assumptions have been made regarding recovery of by-products. Selective mining units were not modelled in the Mineral Resource. Only Au was estimated so correlation analysis was not possible The deposit mineralisation was constrained by wireframes constructed using a 0.5 g/t Au cut-off grade (Open pit) or 1.0 g/t Au cut-off grade (underground) in association with logged geology, particularly the presence of quartz veining and biotite-sulphide alteration. The wireframes were applied as hard boundaries in the estimate. The validation was carried out by three methods: Visual comparison of block grades with nearby drill assay results on a section by section basis. Statistical comparison of estimated grades and composite grades on a domain by domain basis. Trend analysis of estimated block model grades versus composite grades on 10m northing and 5m vertical intervals.
Moisture	• Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	Tonnages and grades were estimated on a dry in situ basis. No moisture values were reviewed.
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	 Open Pit - The Mineral Resource has been reported at a 0.5 g/t Au cut-off from the OK model, within a \$2400 optimised pit shell. Underground - The Mineral Resource has been reported at a 2.0 g/t Au cut-off from the Underground OK model, outside the \$2400 optimised pit shell and from fresh material only. The 2.0 g/t cutoff is an approximate estimate of the incremental cut-off for narrow vein underground open stoping.
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	 The Riverina Mineral Resource update was reported by applying the conceptual \$2,400 pit shell which was generated using the Mineral Resource block model. A possible economic mining inventory was determined from the Measured, Indicated and Inferred material within the unconstrained Mineral Resource. Pit slopes used in the conceptual optimisation were based on typical slope parameters used in the Western Australian goldfields for oxide, transition and fresh respectively. Allowance was made for in-pit ramps. Assumed mining costs were applied on a progressive bench by bench basis using contractor supplied budget quotations for the Davyhurst project received in October 2018 for the Davyhurst project area. A dilution factor of 15% and mining recovery of 95% was applied to define the potential economic mining inventory within the pit shell. The Main Lodes (previously mined by underground methods) are thought to be amenable to underground mining, being of sufficient grade and continuity. With the exception of the underground cut-off as mentioned above, no modifying factors were applied to the underground portion of the Mineral Resource.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be	 Riverina has no known reported metallurgical issues. Metallurgical test-work has been completed as part of the part of the mining studies. Gold recoveries range from 90% to 98%, depending on weathering state. Fresh rock recoveries are 94%.

Criteria	JORC Code explanation	Commentary
	rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	Approvals are currently in place for the Riverina project.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 Bulk density determinations were derived from measurements (immersion method) made on recent core samples drilled by OBM. Historic bulk densities for fresh basalt collected from underground in 1988 were analysed. The mean fresh rock density from recent drilling compared closely with the mean density of underground samples. Bulk density values used in the resource were 2.1t/m3, 2.5t/m3 and 2.88t/m3 for oxide, transitional and fresh mineralisation respectively. It is assumed there are minimal void spaces in the rocks within the Riverina deposit. Values applied in the Riverina block model are similar to other known bulk densities from similar geological terrains.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 Mineral Resources were classified in accordance with the Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC, 2012). The classification takes account of confidence in the geological interpretation, sample density and assay QAQC. Open Pit - To avoid a mosaic style of classification, solid wireframes were constructed to encompass areas considered to adequately fulfil the requirement to be classified as either, measured, indicated or inferred: Measured – Near surface areas defined by close spaced RC grade control drilling Indicated – Areas with drill spacing up to approximately 20ME x 20mN and with reasonable confidence in the geological interpretation and grade continuity Inferred – Areas with drill spacing in excess of 20mE x 20mN and where grade continuity is poorer as defined by a lower sample density, even though geological continuity may be apparent. Underground - Wireframe solids were constructed to encompass areas considered to adequately fulfil the requirement to be classified as either, measured, indicated or inferred: Measured – Near surface areas defined by close spaced RC grade control drilling Indicated – Areas with drill spacing in excess of 20mE x 20mN and where grade continuity is poorer as defined by a lower sample density, even though geological continuity may be apparent. Underground - Wireframe solids were constructed to encompass areas considered to adequately fulfil the requirement to be classified as either, measured, indicated or inferred: Measured – Near surface areas defined by close spaced RC grade control drilling Indicated – Areas with:

Criteria	JORC Code explanation	Commentary
Criteria Audits or reviews Discussion of relative accuracy/ confidence	 The results of any audits or reviews of Mineral Resource estimates. Where appropriate a statement of the relative accuracy confidence level in the Mineral Resource estimate using approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confider limits, or, if such an approach is not deemed appropriat qualitative discussion of the factors that could affect th relative accuracy and confidence of the estimate. The statement should specify whether it relates to glob local estimates, and, if local, state the relevant tonnage which should be relevant to technical and economic 	 Inferred – Areas with: drill spacing in long section in excess of 30mN x 30mRL and where grade continuity is poorer as defined by a lower sample density, even though geological continuity may be apparent. poorer estimation quality as defined by the conditional bias slope > 0.2 and < 0.6 The input data is comprehensive and of sufficient quality for use in the MRE's. Significant recent drilling, covering the entire deposit, has confirmed the location and tenor of many historic drill-holes. Assay QAQC is of sufficient quality for the assays to be used in the MRE. There is sufficient understanding of the geology to support the current interpretation in terms of continuity. The Mineral Resource estimates appropriately reflects the view of the Competent Person. Neither open pit nor Underground MRE has been reviewed or audited The Riverina Mineral Resource estimate is reported with a reasonable degree of confidence. The data quality is good and the drill holes from recent drilling have detailed logs produced by qualified geologists. Historic logging has been reviewed. The Rineral Resource statements relate to global estimates of tonnes and grade. Confidence in the estimate allows reasonable quantification of global metal content. The interpretation is considered globally robust but at a local scale, variations to ore geometry and grade could be expected. All Measured and Indicated resources are relevant to economic evaluation The deposit is currently being mined – open pit. Although previously mined to a shallow depth, historical open pit production data for Riverina is not available for review.
	 qualitative discussion of the factors that could affect th relative accuracy and confidence of the estimate. The statement should specify whether it relates to glob local estimates, and, if local, state the relevant tonnage 	 Although previously mined to a shallow depth, historical open pit production data for Riverina is not available for review. al or res, al fthe

Section 3 Estimation and Reporting of Mineral Resources – Riverina South and British Lion

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Data from EGL/OBM drilling captured into Field Marshall logging software. Data sent from site and imported into SQL database via DBMS. Validation checks in SQL database ensure data integrity is not compromised. The data is verified by company geologists before being sent to the DBA for validation or passing Geobank Software validation protocols Historic data has been verified by checking historical reports on the project.
		The Competent Person has undertaken a number of validation checks on the database, using Micromine software which

Criteria	JORC Code explanation	Commentary
		include, but are not limited to, checks for overlapping intervals, checks for missing data/records, visual checks on drill hole locations and traces to identify any possible survey issues. No major issues were detected
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	Site visits to Riverina South and to Riverina have been made.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 Mineralised structures are roughly N-S striking, sub-vertical to steeply east dipping. The main lodes at Riverina extend south into Riverina South and British Lion. Minor sinistral offsets appear to offset the lodes though these have not been modelled given the wide drill spacing. Resource interpretations are guided by presence and intensity of veining and/or alteration noted in logging. Geological continuity of N-S structures is reasonably defined, although sometimes terminate abruptly, possibly due to the minor offsets caused by the E-W structures. Alternative interpretations have not been considered as the orientation of mineralisation at Riverina is well established currently being mined.
Dimensions	• The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	 The Riverina South deposit is defined over 1000m strike length and to depths of 130m below surface. A southern portion is centred around the British Lion prospect and has a strike length of 560m The northern portion of Riverina South is the southern extension of Riverina deposit, particularly Main lodes. This northern portion of Riverina South has a strike length of approximately 200m. Between this area and British Lion is a less well drilled portion of the deposit with only minor lodes defined thus far.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. 	 Im composite samples coded to the mineralised domains used as inputs to estimation. Only RC and diamond drilling samples used for estimation. Ordinary Kriging (OK) was used to estimate gold grades into a 3-dimensional block model. Estimation parameters derived from modelled semi-variograms. Micromine software was used for the estimation. High grade cuts up to 28g/t were applied to 1m composite data based on analysis of individual domains. The parent block dimensions used were 20m NS by 2m EW by 10m vertical with no sub-celling. Instead, factors were used to define the proportion of blocks within mineralised wireframes to define appropriate volumes and therefor tonnages. Drill hole spacing is approximately 20m between sections and 25m along section in the better drilled portions of the deposit. An orientated ellipsoid search was used to select data and was based on parameters derived from the variography. Estimation completed in 3 runs each with less restrictive search, and minimum sample parameters. The initial interpolation pass was used with a maximum range greater than the range of the principal direction of the modelled variograms. Maximum number of samples was 16, minimum was 6. A four-sector search was applied to maximise sample representivity in all directions. Range increased progressively and number of samples required reduced for each subsequent run. Following estimation into the 20m NS by 2m EW by 10m model, the model was re-blocked to a selective mining unit (SMU) block size of 5m NS by 2m EW by 2.5m, consistent with the size previously used for the Riverina Localised Uniform Conditioning (LUC) model used for the Definitive Feasibility Study. The SMU model was again coded with the mineralisation wireframes to produce new factors (proportions) od SMU's within mineralised lodes. No estimation of deleterious elements was completed in October 2020. (<i>See OBM ASX announcement dated 9 October 2021</i>)
	 Discussion of basis for using or not using grade cutting of capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of 	 Only Au was estimated so correlation analysis was not possible The deposit mineralisation was constrained by wireframes constructed using a 0.5 g/t Au cut-off grade in association with logged geology, particularly the presence of quartz veining and biotite-sulphide alteration. The wireframes were applied as hard boundaries in the estimate.

Criteria	JORC Code explanation	Commentary
	reconciliation data if available.	 Grade capping was applied on a domain by domain basis due to the usually positively skewed grade populations The validation was carried out by two methods: Visual comparison of block grades with nearby drill assay results on a section by section basis. Statistical comparison of estimated grades and composite grades on a domain by domain basis. Trend analysis of estimated block model grades versus composite grades on 10m northing and 5m vertical intervals.
Moisture	 Whether the tonnages are estimated on a dry basis or we natural moisture, and the method of determination of th moisture content. 	
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	• The Mineral Resources have been reported at a 0.5 g/t Au cut-off based on assumptions about economic cut-off grades for open pit mining.
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicab external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	f
Metallurgical factors or assumptions	 The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made. 	
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, th status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	e would restrict development of the project.
Bulk density	 Whether assumed or determined. If assumed, the basis for th	 Bulk density determinations have not been completed at Riverina South or British Lion. Values applied to Riverina South or

Criteria	JORC Code explanation	Commentary
	 the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 British Lion model were derived from Riverina deposit just to the north. Similar lithologies to Riverina are observed at British Lion, mafics, ultramafics and sediments. Bulk density values used in the resource were 2.1t/m3, 2.5t/m3 and 2.88t/m3 for oxide, transitional and fresh mineralisation respectively. It is assumed there are minimal void spaces in the rocks within the Riverina deposit. Values applied in the British Lion block model are similar to other known bulk densities from similar geological terrains.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 Mineral Resources were classified in accordance with the Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC, 2012). The classification takes account of confidence in the geological interpretation, sample density and assay QAQC. Where the deposits are drilled to a 25m x 20m spacing there is reasonable confidence in the geology and grade interpretation. Current mining at Riverina has confirmed steep east dipping to sub vertical north-south striking mineralised lodes. This is consistent with the Riverina South and British Lion interpretation. These areas have been classified as indicated using solid wireframes to code the block model. Where lodes are defined by two or fewer drill holes, they have been classified as inferred. There is sufficient understanding of the geology to support the current interpretation in terms of continuity. The Mineral Resource estimate appropriately reflects the view of the Competent Person.
Audits or reviews	• The results of any audits or reviews of Mineral Resource estimates.	The MRE has not been audited or reviewed in detail.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 The British Lion and Riverina South Mineral Resource estimate is considered to be reported with a reasonable degree of confidence. The data quality is good, the majority of drilling having been completed recently by OBM. The Mineral Resource statement relates to global estimates of tonnes and grade. Confidence in the estimate allows reasonable quantification of global metal content. However, at a local scale there are risks associated with the estimation. The interpretation is considered globally robust but at a local scale variations to ore geometry could be expected. The deposits have not been mined. There is no production data.

Section 3 Estimation and Reporting of Mineral Resources – Silver Tongue

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Historic data has been verified by checking historical reports on the project. The Competent Person has undertaken a number of validation checks on the database, using Micromine software which include, but are not limited to, checks for overlapping intervals, checks for missing data/records, visual checks on drill hole locations and traces to identify any possible survey issues. No major issues were detected
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 Numerous site visits completed to Riverina Area, however not to Silver Tongue directly. No recent drilling has been completed at Silver Tongue
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 Mineralised structures are roughly N-S striking, sub-vertical to steeply east dipping. A single quartz lode hosts most of the mineralisation with minor lodes in the hangingwall and footwall. A late NE fault appears to sinistrally offset the mineralisation. Minor sinistral offsets of up to 5m are noted in underground workings at Riverina Mine approx. 1km to the west. Resource interpretations are guided by presence and intensity of veining and/or alteration noted in logging. Geological continuity of N-S structures are well defined, although sometimes terminate abruptly, possibly due to the minor offsets caused by the E-W structures.
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. 	The lodes at Silver Tongue are defined over 250m in a N-S direction and defined to a depth of 180m below surface. The deposit extends for 90m in an E-W direction
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. 	 Interpolation was done using Ordinary Kriging (OK). 1m composite samples coded to the mineralised domains were used as inputs to estimation. Only RC samples were used for estimation; no diamond drilling done as yet. OK was used to estimate gold grades into a 3-dimensional block model. Estimation parameters were derived from modelled semi-variograms using Supervisor[™]. Micromine[™] software was used for the OK estimation. Grade capping was applied on a domain by domain basis due to the usually positively skewed grade populations. A high grade cuts of 40 g/t were applied to 1m composite data from the main lode. Remaining lodes did not require top cutting. The parent block dimensions for OK estimates were 10m NS by 5m EW by 10m vertical. Sub-cells of 1m by 0.5m by 1m were applied to the OK model. Drill hole spacing is approximately 25m between section and 20m along section. A parent block size of 10m x 2m x 10m was selected (approx. 50% of data spacing) using QKNA. An orientated ellipsoid search was used to select data and was based on parameters derived from variography defined using Supervisor[™] software. Estimation completed with one run. The interpolation pass used an expanded search. Maximum number of samples was 20, minimum was 6 or 4 depending on lode. A four-sector search was applied to maximise sample representivity in all directions. No estimation of deleterious elements was carried out. Only Au was interpolated into the block model. Previous resource estimates have been completed in 2007 No assumptions have been made regarding recovery of by-products. There are no assumptions around selective mining units. Only Au was estimated so correlation analysis was not possible

Criteria	JORC Code explanation	Commentary
	 Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 The deposit mineralisation was constrained by wireframes constructed using a 0.6 g/t Au cut-off grade in association with logged geology, particularly the presence of quartz veining and biotite-sulphide alteration. The wireframes were applied as hard boundaries in the estimate. The validation was carried out by three methods: Visual comparison of block grades with nearby drill assay results on a section by section basis. Statistical comparison of estimated grades and composite grades on a domain by domain basis. Trend analysis of estimated block model grades versus composite grades on 10m northing and 5m vertical intervals.
Moisture	• Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	• Tonnages and grades were estimated on a dry in situ basis. No moisture values were reviewed.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	 The Mineral Resource has been reported at a 0.5 g/t Au cut-off from the OK model within an optimised shell at \$2,400. The portions of the Mineral Resource that exists below the pit shell was reported from the OK model using a 2 g/t cut-off grade, being an approximate estimate of the incremental cut-off for narrow vein underground open stoping.
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	 It is assumed a selective open cut mining practise would apply at the deposit given the narrow nature of the mineralisation. The Silver Tongue Mineral Resource update was reported by applying the conceptual \$2,400 pit shell which was generated using the Mineral Resource block model. A possible economic mining inventory was determined from the Measured, Indicated and Inferred material within the unconstrained Mineral Resource. Pit slopes used in the conceptual optimisation were based on typical slope parameters used in the Western Australian goldfields for oxide, transition and fresh respectively. Allowance was made for in-pit ramps. Assumed mining costs were applied on a progressive bench by bench basis using contractor supplied budget quotations used for the Davyhurst DFS. With the exception of the underground cut-off as mentioned above, no modifying factors were applied to the underground portion of the Mineral Resource.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	Metallurgical test work has not been undertaken at Silver Tongue
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions 	The area is not located in an environmentally sensitive area so there is no reason to believe that environmental approvals would restrict development of the project.

Criteria	JORC Code explanation	Commentary
	made.	
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 No diamond drilling has been done at Silver Tongue hence no measurements density measurements are available. Bulk density values used in the Riverina Mineral Resource, which is 1km to the west, were used for this MRE. Values used were 2.1t/m3, 2.5t/m3 and 2.88t/m3 for oxide, transitional and fresh mineralisation respectively. It is assumed there are minimal void spaces in the rocks within the Riverina deposit. Values applied in the Silver Tongue block model are similar to other known bulk densities from similar geological terrains.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 Mineral Resources were classified in accordance with the Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC, 2012). The classification takes account of confidence in the geological interpretation, sample density and assay QAQC. Drilling, sampling and assay quality by previous operators is known to be adequate and together with the drill density would allow portions of the resource to attain an indicated classification. However, in view of the absence of diamond drilling, density data and lack of assay QAQC information, the entire resource is classified as inferred. The Mineral Resource estimate appropriately reflects the view of the Competent Person.
Audits or reviews	 The results of any audits or reviews of Mineral Resource estimates. 	No audits or reviews for this early stage MRE
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 The Silver Tongue Mineral Resource estimate is reported with a moderate degree of confidence. The data quality is good and the drill holes from recent drilling have detailed logs produced by qualified geologists. Historic logging has been reviewed. Diamond drilling will provide a better geological understanding and may indicate alternative interpretations. The current interpretation is considered globally reasonable and is based on knowledge of the steep N-S striking mineralised structures 1km west at Riverina mine. At a local scale, variations to ore geometry could be expected. The confidence in the MRE is reflected in the inferred classification. The block model estimate is a global resource estimate. Confidence in the estimate allows reasonable quantification of global metal content. The deposit is not currently being mined.

Section 3 Estimation and Reporting of Mineral Resources – Forehand

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Historic data has been verified by checking historical reports on the project. The Competent Person has undertaken a number of validation checks on the database, using Micromine software which include, but are not limited to, checks for overlapping intervals, checks for missing data/records, visual checks on drill hole locations and traces to identify any possible survey issues. No major issues were detected
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 Numerous site visits completed to Riverina Area, however not to Forehand directly. No recent drilling has been completed at Forehand
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 Mineralised structures are roughly N-S striking, sub-vertical to steeply east dipping. The lodes appear to terminate at the postulated location of a NE striking fault, observed in the SAM imagery. There is a lack of drilling north of this and lodes may continue north, possibly with a sinistral offset across the NE fault. Minor sinistral offsets of up to 5m are noted in underground workings at Riverina Mine approx. 1km to the west. Resource interpretations are guided by presence and intensity of veining and/or alteration noted in logging. Geological continuity of N-S structures are reasonable defined, although sometimes terminate abruptly, possibly due to the minor offsets caused by the E-W structures.
Dimensions	• The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	 The lodes at Forehand are defined over 350m in a N-S direction and defined to a depth of 180m below surface. The deposit extends for >100m in an E-W direction.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. 	 Interpolation was done using Ordinary Kriging (OK). 1m composite samples coded to the mineralised domains were used as inputs to estimation. Only RC samples were used for estimation; no diamond drilling done as yet. OK was used to estimate gold grades into a 3-dimensional block model. Estimation parameters were derived from modelled semi-variograms using Supervisor[™]. Micromine[™] software was used for the OK estimation. Grade capping was applied on a domain by domain basis due to the usually positively skewed grade populations. High grade cuts of up to 25 g/t were applied to 1m composite data. The parent block dimensions for OK estimates were 10m NS by 5m EW by 10m vertical. Sub-cells of 1m by 0.5m by 1m were applied to the OK model. Drill hole spacing is approximately 25m between section and 20m along section. A parent block size of 10m x 2m x 10m was selected (approx. 50% of data spacing) using QKNA. An orientated ellipsoid search was used to select data and was based on parameters derived from variography defined using Supervisor[™] software. Estimation completed with two runs. The interpolation pass used an expanded search. Maximum number of samples was 20, minimum was 6. A four-sector search was applied to maximise sample representivity in all directions. The second rune reduced the minimum samples for estimation to 2 while keeping the search range constant. No estimation of deleterious elements was carried out. Only Au was interpolated into the block model. Previous resource estimates have been completed in 2008. No assumptions have been made regarding recovery of by-products. There are no assumptions around selective mining units. Only Au was estimated so correlation analysis was not possible The deposit mineralisation was constrained by wireframes constructed using a 0.6 g/t Au cut-off grade in association with logged geology, particu

Criteria	JORC Code explanation	Commentary
	comparison of model data to drill hole data, and use of reconciliation data if available.	 Statistical comparison of estimated grades and composite grades on a domain by domain basis. Trend analysis of estimated block model grades versus composite grades on 10m northing and 5m vertical intervals.
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. 	• Tonnages and grades were estimated on a dry in situ basis. No moisture values were reviewed.
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	 The Mineral Resource has been reported at a 0.5 g/t Au cut-off from the OK model within an optimised shell at \$2,400. The portions of the Mineral Resource that exists below the pit shell was reported from the OK model using a 2 g/t cut-off grade, being an approximate estimate of the incremental cut-off for narrow vein underground open stoping.
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	 It is assumed a selective open cut mining practise would apply at the deposit given the narrow nature of the mineralisation. The Forehand Mineral Resource update was reported by applying the conceptual \$2,400 pit shell which was generated using the Mineral Resource block model. A possible economic mining inventory was determined from the Measured, Indicated and Inferred material within the unconstrained Mineral Resource. Pit slopes used in the conceptual optimisation were based on typical slope parameters used in the Western Australian goldfields for oxide, transition and fresh respectively. Allowance was made for in-pit ramps. Assumed mining costs were applied on a progressive bench by bench basis using contractor supplied budget quotations used for the Davyhurst DFS. With the exception of the underground cut-off as mentioned above, no modifying factors were applied to the underground portion of the Mineral Resource.
Metallurgical factors or assumptions	 The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made. 	Metallurgical test work has not been undertaken at Forehand
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	The area is not located in an environmentally sensitive area so there is no reason to believe that environmental approvals would restrict development of the project.
Bulk density	• Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.	 No diamond drilling has been done at Forehand hence no density measurements are available. Bulk density values used in the Riverina Mineral Resource, which is 1km to the west, were used for this MRE. Values used were 2.1t/m3, 2.5t/m3 and 2.88t/m3 for oxide, transitional and fresh mineralisation respectively. It is assumed there are minimal void spaces in the rocks within the Riverina deposit. Values applied in the Forehand block

Criteria	JORC Code explanation	Commentary
	 The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	model are similar to other known bulk densities from similar geological terrains.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 Mineral Resources were classified in accordance with the Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC, 2012). The classification takes account of confidence in the geological interpretation, sample density and assay QAQC. Drilling, sampling and assay quality by previous operators is known to be adequate and together with the drill density would allow portions of the resource to attain an indicated classification. However, in view of the absence of diamond drilling, density data and lack of assay QAQC information, the entire resource is classified as inferred. The Mineral Resource estimate appropriately reflects the view of the Competent Person.
Audits or reviews	• The results of any audits or reviews of Mineral Resource estimates.	No audits or reviews for this early stage MRE
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 The Forehand Mineral Resource estimate is reported with a moderate degree of confidence. The data quality is good and the drill holes from recent drilling have detailed logs produced by qualified geologists. Historic logging has been reviewed. Diamond drilling will provide a better geological understanding and may indicate alternative interpretations. The current interpretation is considered globally reasonable and is based on knowledge of the steep N-S striking mineralised structures 1km west at Riverina mine. At a local scale, variations to ore geometry could be expected. The confidence in the MRE is reflected in the inferred classification. The block model estimate is a global resource estimate. Confidence in the estimate allows reasonable quantification of global metal content. The deposit is not currently being mined.

Section 3 Estimation and Reporting of Mineral Resources – Sand King

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Data from EGL/OBM drilling captured into Field Marshall logging software. Data sent to site for import into SQL database via DBMS. Validation checks in SQL database ensure data integrity is not compromised. Data for use in resource estimation derived directly from SQL via queries (views) Data validation included: review of historic digital data versus original hardcopy records Inspection of mineralised intervals in historic core
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 Numerous site visits completed to: View and log historic core Map the Sand King pit Log recent drill core
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 Sand King pit mapped by structural geological consultants (Model Earth Pty. LTD) who determined the structural controls on mineralisation. structural controls on mineralisation. Structural orientations seen in pit walls and from ore mark ups completed by previous operators. Mineralised structures are NE-SW striking, steeply dipping to the north west. An extensive relog program of historic diamond core was completed to provide consistency with EGL geological logging. Inspection of core and ore shows the mineralisation to be associated with quartz-carbonate veining and biotite-sulphide alteration either side of the veining. Resource interpretations guided by presence and intensity of veining and/or biotite noted in logging. Geological continuity of NE-SW structures is well defined, although can terminate abruptly. Mineralisation is also locally complicated by intruding felsic dykes.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	 The Sand King deposit extends for over 800m in NE-SW direction and approximately 300m in a SE-NW direction. The Resource extends for 280m below the surface RL of 420m AHD.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions about correlation between variables. 	 Interpolation was done using Ordinary Kriging (OK) and Localised Uniform Conditioning (LUC) estimation methods. The same mineralisation wireframes were used for the OK and LUC estimations. LUC is a non-linear method able to estimate the grade distribution of small blocks relative to the available data spacing (i.e. Selective Mining Unit [SMU] sized blocks) without over-smoothing. Over-smoothing is common when using a linear method such as Ordinary Kriging (OK) on positively skewed and highly variable gold grade distributions, where the data spacing is relatively wide. 1m composite samples coded to the mineralised domains were used as inputs to estimation. Only RC (including RC grade control) and diamond drilling samples were used for estimation. OK and LUC was used to estimate gold grades into a 3-dimensional block model. Estimation parameters were derived from modelled semi-variograms. MicromineTM software was used for the OK estimation. IsatisTM software was used for the LUC estimation. LUC estimates were exported from Isatis and imported into Micromine for further processing. Grade capping was applied on a domain by domain basis due to the usually highly positively skewed grade populations. High grade cuts up to 25g/t were applied to 1m composite data based on analysis of individual domains. The parent block dimensions for OK and LUC panel estimate was not sub-celled. The LUC selective mining unit (SMU) was 2m NS by 5m EW by 2.5m vertical. Drill hole spacing is approximately 20m between section and 20m along section. The parent (panel) block size is approx. 50% of data spacing. An orientated ellipsoid search was used to select data and was based on parameters derived from the variography defined using SupervisorTM software. Estimation completed in 4 runs each with less restrictive search, and minimum sample parameters. The initial interpolation pass was used with a maximum range less than the range of the princi

Criteria	JORC Code explanation	Commentary
	 Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 run had minimum samples set to 2. No estimation of deleterious elements was carried out. Only Au was interpolated into the block model. Previous OK resource estimates have been completed in 2017. As only minor changes were made to the mineralisation interpretation used in the 2017 MRE, this OK estimate compares favourably to the 2017 MRE. There are minor differences to tonnes (-3%), grade (0%) and ounces (-3%). Comparisons to earlier MRE's is not meaningful as mineralisation interpretation is quite different No assumptions have been made regarding recovery of by-products. The SMU size and orientation is selected with due consideration of ore geometry, the selective mining method (rather than bulk mining) and reflects a minimum size that could be defined by grade control drilling. Only Au was estimated so correlation analysis was not possible The deposit mineralisation was constrained by wireframes constructed using an approx. 1 g/t Au cut-off grade in association with logged geology, particularly the presence of quartz veining and biotite-sulphide alteration. Ore lode continuity is preserved at the relatively high interpretation cut-off grade. The wireframes were applied as hard boundaries in the estimate. The validation was carried out by three methods: Visual comparison of block grades with nearby drill assay results on a section by section basis. Comparison of estimated grades and composite grades on a domain by domain basis. Trend analysis of estimated block model grades versus composite grades.
Moisture	• Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	• Tonnages and grades were estimated on a dry in situ basis. No moisture values were reviewed.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	 The Mineral Resource has been reported at a 0.5 g/t Au cut-off from the LUC model, based on assumptions about economic cut-off grades for open pit mining. The portions of the Mineral Resource that exists below the pit shell was reported from the OK model using a 2 g/t cut-off grade, being an approximate estimate of the incremental cut-off for narrow vein underground open stoping.
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	 It is intended to adopt a selective open cut mining practise at the deposit using mining equipment consistent with the SMU size such that mining losses and dilution are minimized. The LUC model is usually considered to account for mining dilution however, due to the sometimes narrow mineralised lodes, an appropriate level of dilution is added during optimisation studies. The Sand King Mineral Resource update was reported by applying the conceptual \$2,400 pit shell which was generated using the Mineral Resource block model. A possible economic mining inventory was determined from the Indicated and Inferred material within the unconstrained Mineral Resource. Pit slopes used in the conceptual optimisation were based on typical slope parameters used in the Western Australian goldfields for oxide, transition and fresh respectively. Allowance was made for in-pit ramps. Assumed mining costs were applied on a progressive bench by bench basis using contractor supplied budget quotations for the Davyhurst project received in October 2018 for the Davyhurst project area. The average mining costs for the pit shell was estimated to be \$4.2 per tonne of material mined. The conceptual combined processing and administration cost applied was \$43 per tonne processed. A dilution factor of 15% and mining recovery of 95% was applied to define the potential economic mining inventory within the pit shell.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical	 Sand King deposit has been successfully mined in the past with no reported metallurgical issues. Metallurgical test-work was undertaken by as part of the mining studies. Gold recoveries adopted are 94% (oxide), 92%(Transition) and 85% (Fresh)

Criteria	JORC Code explanation	Commentary
	assumptions made.	
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	 The previous mining operations included the development of waste dumps at the site. These dumps will be expanded to accommodate additional waste disposal. The area is not located in an environmentally sensitive area so there is no reason to believe that environmental approvals would restrict development of the project.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 230 density measurements (water immersion method) were taken from ore and waste material derived from recent OBM drilling. Bulk density values used in the resource were 1.8t/m3, 2.48t/m3 and 2.88t/m3 for oxide, transitional and fresh mineralisation respectively. Densities of 1.9t/m3, 2.78t/m3 and 3.0t/m3 for oxide, transitional and fresh waste were assigned. The fresh rock ore density (2.88 g/cm³) is the density determined by Oretest laboratory on a bulk ore sample in 1998 These bulk density estimates are similar to values determined for comparable basalt hosted gold deposits, and in particular Missouri deposit 600m to the south.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 Mineral Resources were classified in accordance with the Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC, 2012). The Mineral Resource was classified as Indicated and Inferred Mineral Resource on the basis of data quality, sample spacing, and lode continuity. The Indicated portion of the Mineral Resource was defined where: Good support from drilling, averaging a nominal 20mN x 20mE Areas where the estimation quality is reasonable The remaining portions of the deposit were classified as Inferred Mineral Resource where: Data support is poorer with drilling typically greater than 20m x 20m Estimation quality is lower defined by a slope of regression The definition of mineralised zones is based on sound geological understanding of the controls on mineralisation. This has produced a robust model of mineralised domains. This model differs slightly from previous models (pre 2017) where only steep lodes were modelled. The northern end of the deposits has moderately north dipping lodes modelled.
Audits or reviews	The results of any audits or reviews of Mineral Resource	 Inferred resources are typically at the periphery of mineralised domains and at depth where confidence is generally lower The Mineral Resource estimate appropriately reflects the view of the Competent Person. The MRE is currently being reviewed by personnel from CSA Global.

Criteria	JORC Code explanation	Commentary
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 The Sand King Mineral Resource estimate is reported with a reasonable degree of confidence. The data quality is good and the drill holes from recent drilling by EGS have detailed logs produced by qualified geologists. Historic logging has been reviewed. The open pit LUC block model estimate is a local resource estimate which has block sizes chosen at the expected "SMU" selection size. Confidence in the estimate allows reasonable quantification of global metal content. The interpretation is considered globally robust but at a local scale, variations to ore geometry could be expected. All Measured and Indicated resources are relevant to economic evaluation The deposit is not currently being mined. Historical production records are not available for the deposit.

Section 3 Estimation and Reporting of Mineral Resources – Missouri

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Data from EGL/OBM drilling captured into Field Marshall logging software. Data sent to site for import into SQL database via DBMS. Validation checks in SQL database ensure data integrity is not compromised. Data for use in resource estimation derived directly from SQL via queries (views) Data validation included: review of historic digital data versus original hardcopy records Inspection of mineralised intervals in historic core
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 Numerous site visits completed to: View and log historic core Map the Missouri pit Ensure there are no impediments to development
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 Missouri pit mapped by structural geological consultants (Model Earth Pty. LTD) who determined the structural controls on mineralisation. Structural orientations seen in pit walls and from ore mark ups completed by previous operators. Mineralised structures are E-W striking, moderate dipping to the north and N-W striking, moderate dipping to the N-E. An extensive relog program of historic diamond core was completed to provide consistency with EGL geological logging. Inspection of core and ore shows the mineralisation to be associated with quartz-carbonate veining and biotite-sulphide alteration either side of the veining. Resource interpretations guided by presence and intensity of veining and/or biotite noted in logging. Geological continuity of E-W strictures is limited, being compartmentalised between the N-W structures and a series of N-E striking felsic dykes.

Criteria	JORC Code explanation	Commentary
Criteria Dimensions Estimation and modelling techniques	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. 	 The Misssouri deposit extends for 550m in both a north-south and east-west direction. The deposit extends for 280m below the surface RL of 420m AHD Interpolation was done using Ordinary Kriging (OK) and Localised Uniform Conditioning (LUC) estimation methods. The same mineralisation wireframes were used for the OK and LUC estimations. LUC is a non-linear method able to estimate the grade distribution of small blocks relative to the available data spacing (i.e. Selective Mining Unit [SMU] sized blocks) without over-smoothing. Over-smoothing is common when using a linear method such as Ordinary Kriging (OK) on positively skewed and highly variable gold grade distributions, where the data spacing is relatively wide. 1m composite samples coded to the mineralised domains were used as inputs to estimation. Only RC (including RC grade control) and diamond drilling samples were used for estimation. OK and LUC was used to estimate gold grades into a 3-dimensional block model. Estimation parameters were derived from modelled semi-variograms. Micromine™ software was used for the OK estimation. Isatis™ software was used for the LUC estimation. LUC estimates were exported from Isatis and imported into Micromine™ for further processing. Grade capping was applied on a domain by domain basis due to the usually highly positively skewed grade populations. High
	 data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 Grade capping was applied of a domain by domain basis due to the usually inginy positively skewed grade populations. Hig grade cuts up to 40g/t were applied to 1m composite data based on analysis of individual domains. The parent block dimensions for OK and LUC panel estimates were 10m NS by 10m EW by 5m vertical. Sub-cells of 1m by 1 by 0.5m were applied to the OK model. The LUC panel estimate was not sub-celled. The LUC selective mining unit (SMU) was 2m NS by 5m EW by 2.5m vertical. Drill hole spacing is approximately 20m between section and 20m along section. The pare (panel) block size is approx. 50% of data spacing. An orientated ellipsoid search was used to select data and was based on parameters derived from the variography defined using Supervisor™ software. Estimation completed in 4 runs each with less restrictive search, and minimum sample parameters. The initial interpolation pass was used with a maximum range less than the range of the principal direction of the modelled semi variograms. Maxim number of samples was 28, minimum was 8. A four sector search was applied to maximise sample representivity in all directions. Range increased progressively and number of samples required reduced for each subsequent run. The fourth ru had minimum samples set to 2. No estimation of deleterious elements was carried out. Only Au was interpolated into the block model. Previous resource estimates have been completed in 2003 and 2016. The very different interpretation of the 2003 estimate precludes meaningful comparison. This estimate compares favourably to the 2016 MRE by EGS, as the mineralisation
		 interpretation was essentially the same. No assumptions have been made regarding recovery of by-products. The SMU size and orientation is selected with due consideration of ore geometry, the selective mining method (rather than bulk mining) and reflects a minimum size that could be defined by grade control drilling. Only Au was estimated so correlation analysis was not possible The deposit mineralisation was constrained by wireframes constructed using an approx. 1 g/t Au cut-off grade in association with logged geology, particularly the presence of quartz veining and biotite-sulphide alteration. Ore lode continuity is preserved at the relatively high interpretation cut-off grade. The wireframes were applied as hard boundaries in the estimate. The validation was carried out by three methods: Visual comparison of block grades with nearby drill assay results on a section by section basis. Comparison of estimated grades and composite grades on a domain by domain basis. Trend analysis of estimated block model grades versus composite grades.
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	Tonnages and grades were estimated on a dry in situ basis. No moisture values were reviewed.

Criteria	JORC Code explanation	Commentary
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	 The Mineral Resource has been reported at a 0.5 g/t Au cut-off from the LUC model, based on assumptions about economic cut-off grades for open pit mining. The portions of the Mineral Resource that exists below the pit shell was reported from the OK model using a 2 g/t cut-off grade, being an approximate estimate of the incremental cut-off for narrow vein underground open stoping.
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	 It is intended to adopt a selective open cut mining practise at the deposit using mining equipment consistent with the SMU size such that mining losses and dilution are minimized. The LUC model is usually considered to account for mining dilution however, due to the sometimes narrow and flat lying (40°) mineralised lodes, an appropriate level of dilution is added during optimisation studies. The Missouri Mineral Resource update was reported by applying the conceptual \$2,400 pit shell which was generated using the Mineral Resource block model. A possible economic mining inventory was determined from the Indicated and Inferred material within the unconstrained Mineral Resource. Pit slopes used in the conceptual optimisation were based on typical slope parameters used in the Western Australian goldfields for oxide, transition and fresh respectively. Allowance was made for in-pit ramps. Assumed mining costs were applied on a progressive bench by bench basis using contractor supplied budget quotations for the Davyhurst project received in October 2018 for the Davyhurst project area. The average mining costs for the pit shell was estimated to be \$4.2 per tonne of material mined. The conceptual combined processing and administration cost applied was \$43 per tonne processed. A dilution factor of 15% and mining recovery of 95% was applied to define the potential economic mining inventory within the pit shell.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 Missouri deposit has been successfully mined in the past with no reported metallurgical issues. The last major mining event at Missouri by SMC in 2004 achieved a 94% gold recovery over 9 toll treated batches. Metallurgical test-work was undertaken by previous operators at the project and has been reviewed Results from previous processing have demonstrated that good gold recovery can be expected from conventional CIL processing methods. Gold recoveries adopted are 94% (oxide), 92%(Transition) and 92% (Fresh)
Environmental factors or assumptions	 Assumptions made: Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	 The previous mining operations included the development of waste dumps at the site. These dumps will be expanded to accommodate additional waste disposal. The area is not located in an environmentally sensitive area so there is no reason to believe that environmental approvals would restrict development of the project.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been 	 Bulk density determinations were derived from historic measurements. Bulk density values used in the resource were 1.8t/m3, 2.4t/m3 and 2.85t/m3 for oxide, transitional and fresh mineralisation respectively. Waste basalt bulk density was 3.0t/m3 The fresh rock ore density (2.85 g/cm³) is the density determined by Oretest laboratory on two bulk ore samples in 1998 These bulk density estimates are similar to values determined for comparable basalt hosted gold deposits, and in particular

Criteria	JORC Code explanation	Commentary
	 measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	Sand King deposit 600m to the north.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 Mineral Resources were classified in accordance with the Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC, 2012). The Mineral Resource was classified as Indicated and Inferred Mineral Resource on the basis of data quality, sample spacing, and lode continuity. The Indicated portion of the Mineral Resource was defined where: Good support from drilling, averaging a nominal 20mN x 20mE Confidence in mineralised lode interpretation Areas where the estimation quality is reasonable The remaining portions of the deposit were classified as Inferred Mineral Resource where: Data support is poorer with drilling typically greater than 20m x 20m Estimation quality is lower defined by a slope of regression Inferred resources are typically at the periphery of mineralised domains and at depth where confidence is generally lower The definition of mineralised zones is based on sound geological understanding of the controls on mineralisation. This has produced a robust model of mineralised domains. This model differs slightly from previous models where only E-W oriented mineralised structures were modelled. Subsequent mining identified N-W structures which have been mapped and incorporated into the current model. The Mineral Resource estimate appropriately reflects the view of the Competent Person.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	The MRE is currently being reviewed by personnel from CSA Global.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 The Missouri Mineral Resource estimate is reported with a reasonable degree of confidence. The data quality is good and the drill holes from recent drilling by EGS have detailed logs produced by qualified geologists. Historic logging has been reviewed. The open pit block model estimate is a local resource estimate which has block sizes chosen at the expected "SMU" selection size. Confidence in the estimate allows reasonable quantification of global metal content. The interpretation is considered globally robust but at a local scale, variations to ore geometry could be expected. All Measured and Indicated resources are relevant to economic evaluation The deposit is not currently being mined. Historical production records are available for the deposit when mined by Siberia Mining Corporation. However due to the different mineralisation interpretation, meaningful comparisons are difficult.

Section 3 Estimation and Reporting of Mineral Resources – Waihi

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Data from EGL/OBM drilling captured into Field Marshall logging software. Data sent from site and imported into SQL database via DBMS. Validation checks in SQL database are carried out to ensure data integrity is not compromised. The data is verified by company geologists before being sent to the DBA for validation or passing Geobank Software validation protocols Historic data has been verified by checking historical reports on the project. The Competent Person has undertaken a number of validation checks on the database, using Micromine software which include, but are not limited to, checks for overlapping intervals, checks for missing data/records, visual checks on drill hole locations and traces to identify any possible survey issues. No major issues were detected.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 Numerous site visits have been completed by the Competent Person with the following objectives: View geology in existing open pit View drilling operations View and log drill core
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 Mineralised structures at Waihi strike from 320° to 345° and are steeply west dipping. Mineralised lodes at Homeward Bound strike 325° and are steep east dipping. The main Waihi lodes are interpreted to be the west limbs of a tightly folded antiform. Homeward Bound lodes are the east limbs of the same antiform. Late stage E-W structures have been mapped and may offset the mineralised lodes slightly. These structures have also been exploited by thin pegmatite dykes. Geology model proposed by Model Earth PTY. LTD following a site visit to map pit exposures and selected core Structural data from OBM drilling was used to guide the orientation of mineralised lodes where possible. Inspection of core, RC chips and pit exposures shows the mineralisation to be associated with biotite and silica alteration and quartz-carbonate veining. Geological continuity of mineralised strictures are well defined, although sometimes terminate abruptly, possibly due to the minor offsets caused by the E-W structures. The main lodes at Waihi are geologically continuous over 0.9 km and are known to extend a further 400m south to the Dexy prospect. Grade continuity is less extensive but well defined at a low cut-off grade (0.4g/t)
Dimensions	• The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	 The main lodes at Waihi are geologically continuous over 0.9 km in a N-S direction and defined to a depth of 200m below surface. The Homeward Bound Lodes are continuous over 0.3 km in a NW-SE direction and defined from surface to a depth of 230 m below surface.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by- 	 Im composite samples coded to the mineralised domains used as inputs to estimation. Only RC and diamond drilling samples used for estimation. Ordinary Kriging (OK) was used to estimate gold grades into a 3-dimensional block model. Estimation parameters derived from modelled semi-variograms. Micromine software was used for the estimation. High grade cuts up to 45 g/t were applied to 1m composite data based on analysis of individual domains. The parent block dimensions used were 10mN by 2mE by 10mRL with sub-cells of 1m by 0.5m by 1.0m. Drill hole spacing is approximately 20m between section and 20m along section. The parent block size was selected (approx. 50% of data spacing) using QKNA. An orientated ellipsoid search was used to select data and was based on Kriging Neighbourhood parameters derived from the variography. Estimation completed in 3 runs each with less restrictive search, and minimum sample parameters. The initial interpolation

Criteria	JORC Code explanation	Commentary
	 products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 pass was used with a maximum range less than the range of the principal direction of the modelled variograms. Maximum number of samples was 16, minimum was 4. A four sector search was applied to maximise sample representivity in all directions. Range increased progressively and number of samples required reduced for the third run only. No estimation of deleterious elements was carried out. Deleterious elements have not been recorded during mining by previous operators Only Au was interpolated into the block model. Previous resource estimates have been completed in 2001 The MRE makes use of RC grade control drilling from the previous mining episode in 2003. Production records are not available to make comparisons. No assumptions have been made regarding recovery of by-products. Silver has not been routinely assayed. Selective mining units were not modelled in the Mineral Resource Only Au was estimated so correlation analysis was not possible The deposit mineralisation was constrained by wireframes constructed using a 0.4 g/t Au cut-off grade in association with logged geology, particularly the presence of quartz veining and biotite-sulphide alteration. The wireframes were applied as hard boundaries in the estimate. Grade capping was applied on a domain by domain basis due to the usually highly positively skewed grade populations The validation was carried out by three methods: Visual comparison of block grades with nearby drill assay results on a section by section basis. Trend analysis of estimated block model grades versus composite grades on 10m northing and 5m vertical intervals.
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. 	• Tonnages and grades were estimated on a dry in situ basis. No moisture values were reviewed.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	 The Mineral Resource has been reported at a 0.5 g/t Au cut-off based on assumptions about economic cut-off grades for open pit mining. The portions of the Mineral Resource that exists below the pit shell was reported using a 2 g/t cut-off grade, being an approximate estimate of the incremental cut-off for narrow vein underground open stoping.
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	 It is intended to adopt a selective open cut mining practise at the deposit. Reasonable prospects for eventual economic extraction for the Waihi Mineral Resource update was confirmed by applying the conceptual AU\$2,400 per ounce pit shell which was generated using the Mineral Resource block model described above. A theoretical economic mining inventory was determined from the Indicated and Inferred material within the unconstrained Mineral Resource. Pit slopes used in the conceptual optimisation were based on preliminary geotechnical assessment of Waihi deposit. Allowance was made in the pit slopes for in-pit ramps. Assumed mining costs were applied on a progressive bench by bench basis using contractor supplied budget quotations for the Davyhurst project received in October 2018 for the Davyhurst project area. The average mining costs for the pit shell was estimated to be \$4.21 per tonne of material mined which included the cost to remove the existing tailings. A dilution factor of 15% and mining recovery of 95% was applied to define the theoretical economic mining inventory within the pit shell. The conceptual combined haulage, processing and administration cost applied was \$39.33 per tonne processed and process recoveries of between 92% and 93% were applied based on weathering domains. The underground cut-off was based on a mining cost of \$140 per tonne of ore, a dilution of 15% and mining recovery of 95%. With the exception of the underground cut-off, no other modifying factors were applied to the underground portion of the Mineral Resource.

Criteria	JORC Code explanation	Commentary
Metallurgical factors or assumptions	• The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 Waihi has no known reported metallurgical issues and has been previously mined. Metallurgical test-work will be completed as part of the part of the feasibility study due for completion in 2020 Results from previous processing (using CIP) have demonstrated that good gold recovery can be expected from modern conventional CIL processing methods.
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	The area is not located in an environmentally sensitive area so there is no reason to believe that environmental approvals would materially restrict development of the project and surface waste rock landforms for Waihi.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 Bulk density determinations were derived from measurements (immersion method) made on recent core samples drilled by OBM. Results compared favourably with limited measurements taken by previous operators using the calliper method. Bulk density values used in the resource were 1.9 t/m3, 2.5 t/m3 and 2.94 t/m3 for oxide, transitional and fresh material, both ore and waste. It is assumed there are minimal void spaces in the rocks within the Waihi deposit. Values applied in the Waihi block model are similar to other known bulk densities from similar geological terrains.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 Mineral Resources were classified in accordance with the Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC, 2012). The classification takes account of confidence in the geological interpretation, sample density and assay QAQC. In order to avoid a mosaic style of classification, solid wireframes were constructed to encompass areas considered to adequately fulfil the requirement to be classified as either, measured, indicated or inferred: Measured – No areas of the current resource attained Measured status Indicated – Areas with drill spacing up to approximately 30 mE x 30 mN and with reasonable confidence in the geological interpretation and grade continuity Inferred – Areas with drill spacing in excess of 30 mE x 30 mN and where grade continuity is poorer as defined by a lower sample density, even though geological continuity may be apparent. The input data is comprehensive and of sufficient quality for use in the MRE. Significant recent drilling, covering the entire deposit, has confirmed the location and tenor of many historic drill-holes. Assay QAQC is of sufficient quality for the assays to be used in the MRE. There is sufficient understanding of the geology to support the current interpretation in terms of continuity.

Criteria	JORC Code explanation	Commentary
		The Mineral Resource estimate appropriately reflects the view of the Competent Person.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	• The MRE has not been audited or reviewed in detail. However, personnel from CSA Global have viewed lode interpretations, estimation parameters and classification at a high level while the MRE was in progress.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 The Waihi Mineral Resource estimate is considered to be reported with a reasonable degree of confidence. The data quality is good and the drill holes from recent drilling have detailed logs produced by qualified geologists. Historic logging has been reviewed. The Mineral Resource statement relates to global estimates of tonnes and grade. Confidence in the estimate allows reasonable quantification of global metal content. However at a local scale there are risks associated with the estimation. The interpretation is considered globally robust but at a local scale variations to ore geometry can be expected. The deposit is not currently being mined. Waihi Production records up to December 1996 are available. Total ore reserves were 761Kt @ 2.41 g/t for 59,000 ounces. Mill production was 704Kt @ 2.39 g/t for 54,000 ounces.

Section 3 Estimation and Reporting of Mineral Resources - Iguana

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Data from OBM drilling captured into Geobank Mobile logging software. Data sent to site for import into SQL database via DBMS. Validation checks in Geobank Mobile and SQL database ensure data integrity is not compromised. Data for use in resource estimation derived directly from SQL via queries (views) Data validation included: review of historic digital data versus original hardcopy records
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 Numerous site visits completed to: Sample mineralised lodes in pit walls Map the Jamaica Rock pit
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations 	 Iguana pit visited by OBM geologists. Structural orientations seen in pit walls. Mineralised structures are NW-SE striking, steeply dipping to the south west. Resource interpretations guided by presence and intensity of veining and/or biotite noted in logging. Geological continuity of structures is well defined, although can terminate abruptly. Mineralisation is also locally complicated by flat lying intruding pegmatites and steep NE trending faults.

Criteria	JORC Code explanation	Commentary
Dimensions	 on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. The extent and variability of the Mineral Resource expressed as length (along strike or 	 The Iguana deposit extends for over 750m in NW-SE direction and approximately 150m across strike. The Resource extends for 200m below the surface RL of 520m AHD.
	otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 Trend analysis of estimated block model grades versus composite grades.
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. 	Tonnages were estimated on a wet in situ basis, densities being derived from downhole gamma readings. No moisture values were reviewed.

Criteria	JORC Code explanation	Commentary		
Cut-off parameters	• The basis of the adopted cut-off grade(s) or quality parameters applied.	 The Mineral Resource has been reported at a 0.5 g/t Au cut-off from the OK model, based on assumptions about economic cut-off grades for open pit mining. The portions of the Mineral Resource that exists below the pit shell was reported from the OK model using a 2 g/t cut-off grade, being an approximate estimate of the incremental cut-off for narrow vein underground open stoping. 		
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	 It is intended to adopt a selective open cut mining practise at the deposit using mining equipment of a size such that mining losses and dilution are minimized. An appropriate level of mining dilution is added during optimisation studies. The Iguana Mineral Resource update was reported by applying the conceptual \$2,100 pit shell which was generated using the Minera Resource block model. A possible economic mining inventory was determined from the Indicated and Inferred material within the unconstrained Mineral Resource. Pit slopes used in the conceptual optimisation were based on typical slope parameters used in the Western Australian goldfields for oxide, transition and fresh respectively. Allowance was made for in-pit ramps. Assumed mining costs we applied on a progressive bench by bench basis using contractor supplied budget quotations for the Davyhurst project area. Application of a 0.5m dilution skin resulted in a global dilution factor of 38%. A mining recovery 95% was applied to define the potential economic mining inventory within the pit shell. 		
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 Very limited metallurgical test-work was undertaken by previous operator Delta gold NL. Oxide - 96% Transitional – 93% Fresh – 88% 		
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	 The previous mining operations included the development of waste dumps at the site. These dumps will be expanded to accommodate additional waste disposal. The area is not located in an environmentally sensitive area so there is no reason to believe that environmental approvals would restrict development of the project. 		
Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined,	 Density measurements were taken by downhole gamma readings, 377 in total. Measurements are wet 		

Criteria	JORC Code explanation	Commentary
Classification	 the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 Mineral Resources were classified in accordance with the Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC, 2012). The Mineral Resource was classified as Indicated and Inferred Mineral Resource on the basis of data quality, sample spacing, and lode continuity. The Measured portion of the Mineral Resource was defined where RC grade control drilling exists The Indicated portion of the Mineral Resource was defined where: Good support from drilling, averaging a nominal 30ml x 30mE Areas where the estimation quality is reasonable The remaining portions of the deposit were classified as Inferred Mineral Resource where: Data support is poorer with drilling typically greater than 30m x 30m Estimation quality is lower defined by a slope of regression The definition of mineralised zones is based on sound geological understanding of the controls on mineralisation. This has produced a robust model of mineralised domains. Inferred resources are typically at the periphery of mineralised domains and at depth where confidence is generally lower
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	The Iguana MRE has not been reviewed externally.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant 	 The Iguana Mineral Resource estimate is reported with a reasonable degree of confidence. The data quality is good and the drill holes from recent drilling by OBM have detailed logs produced by qualified geologists. Historic logging has been reviewed. The open pit OK block model estimate is a global resource estimate. Confidence in the estimate allows reasonable quantification of global metal content. The interpretation is considered globally robust but at a local scale, variations to ore geometry could be expected. All Measured and Indicated resources are relevant to economic evaluation The deposit is not currently being mined. Historical production records are available for the deposit.

Criteria	JORC Code explanation	Commentary
	 to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	

Section 3 Estimation and Reporting of Mineral Resources – Callion

Criteria	 JORC Code explanation Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	Commentary		
Database integrity		 Data from EGS/OBM drilling captured into Field Marshall logging software. Data sent from site and imported into SQL database via DBMS. Validation checks in SQL database are carried out to ensure data integrity is not compromised. The data is verified by company geologists before being sent to the DBA for validation or passing Geobank Software validation protocols. Historic data has been verified by checking historical reports on the project. The Competent Person has undertaken a number of validation checks on the database, using Micromine software which include, but are not limited to, checks for overlapping intervals, checks for missing data/records, visual checks on drill hole locations and traces to identify any possible survey issues. No major issues were detected. 		
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 Site visits have been completed by the Competent Person with the following objectives: View geology in existing open pit View drilling operations View drill core 		
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 The geology of the system and the gold distribution is modelled as a set of sub-parallel, NNW-SSE striking, steeply dipping narrow lodes. The continuity of mineralisation and volume controls are reasonably well established where drilling is at a nominal 10m (X) by 10m (Y) hole spacing. The use of historical drilling provides a level of uncertainty as the company cannot validate all the QAQC data and downhole survey data. The selection of mineralised domains has used geological factors such as geological contacts, logged quartz and sulphides in conjunction with a 1.0g/t cut-off. Gold values transition from background to ore grades over a very short distance. 		
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. 	 The reported mineralised corridor extends 1200m NNW-SSE, up to 40m east/west (in multiple narrow lodes) and up to 350m vertically. Mineralised structures are present at surface for some lodes and have been mined by both open pit and underground methods. 		
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of 	 1m composite samples coded to the mineralised domains used as inputs to estimation. Only RC & diamond drilling samples used for estimation. Ordinary Kriging (OK) was used to estimate gold grades into a 3-dimensional block model. Estimation parameters were derived from modelled semi-variograms using Supervisor[™] software. Surpac[™] software was used for the estimation. 		

Criteria	JORC Code explanation	Commentary
	 extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 High grade cuts up to 60 g/t were applied to 1m composite data based on analysis of individual domains. The parent block dimensions used were 4mE by 10mN by 20mRL with sub-cells of 0.5m by 1.25m by 1.25m. At depth drill hole spacing is down to approximately 40m between sections and 40m along section. An orientated ellipsoid search was used to select data and was based on parameters derived from the variography. Estimation completed in 3 runs each with less restrictive search, and minimum sample parameters. The initial interpolation pass used a search range of 30m, the second pass 60m. The third pass search expanded to fill blocks. Maximum number of samples was 12, minimum was 6 and the maximum samples per hole was 4. No estimation of deleterious elements was carried out. Deleterious elements have not been recorded during mining of Callion. Copper is known to be present at Callion. Only Au was interpolated into the block model. Previous resource estimates have been completed in 2008 by Monarch Gold, and by Ora Banda Mining in May 2020. Open pit production records are available for Callion from mining in 2005. The mined tonnes were 37% higher than the reserve tonnes and the mined grade was 2.82g/t versus 2.29g/t for the reserve grade. 70% more ounces were mined. A comparison to the grade control model has not been node as yet. No assumptions have been made regarding recovery of by-products. Copper is present but has not been routinely assayed and is not modelled. Selective mining units were not modelled in the Mineral Resource. Only Au was estimated so correlation analysis was not possible The deposit mineralisation was constrained by wireframes constructed using an approximately 1.0 g/t Au cut-off grade in association with logged geology. The wireframes were applied as hard boundaries. Grade Top cuts were selected to minimise the effect of isolated high-grade
Moisture	• Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	Tonnages and grades were estimated on a dry in situ basis. No moisture values were reviewed.
Cut-off parameters	• The basis of the adopted cut-off grade(s) or quality parameters applied.	The Mineral Resource has been reported at a 2.0 g/t Au cut-off based on assumptions about economic cut-off grades for underground mining.
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	 It is initially intended to continue open pit mining at Callion using a selective mining method, followed by re-establishment of underground access and additional underground development. Reasonable prospects for eventual economic extraction of the maiden Callion underground Mineral Resource was confirmed by applying the conceptual AU\$2,400 per ounce pit shell which was generated using the open pit Mineral Resource (See ASX Announcement "Callion Open Pit Resource Upgraded", dated 14 May 2020). The Callion underground Mineral Resource is reported from the underground model and includes only material outside the same conceptual AU\$2,400 pit shell. A 2g/t cut-off grade is applied to reporting the underground component of the Callion resource to reflect the increased mining costs associated with underground mining. Parameters used in the generation of the AU\$2,400 conceptual pit shell from the Callion open pit resource model are described below. Pit slopes used in the conceptual optimisation applied slope parameters typical of the region, with geotechnical assessments for the DFS in progress. Allowance was made in the pit slopes for in-pit ramps. Assumed mining costs were applied on a progressive bench by bench basis using contractor supplied budget quotations for the Davyhurst project received in March 2020 for the Davyhurst project area. The average mining costs for the pit shell was estimated to be \$3.93 per tonne of material mined

Criteria	JORC Code explanation	Commentary		
		which included the cost to remove a portion of the adjacent waste landform and rehabilitate the site. A dilution factor of 30% and mining recovery of 95% was applied to define the theoretical economic mining inventory within the pit shell. The conceptual combined haulage, processing and administration cost applied was \$34.66 per tonne processed and process recoveries of between 92% and 93% were applied based on weathering domains.		
Metallurgical factors or assumptions	• The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 Callion has no known reported metallurgical issues and has been previously mined. Results from previous processing (using the existing plant at Davyhurst) have demonstrated that good gold recovery can be expected from modern conventional CIL processing methods. Recent test work from Callion ores give the following recoveries: Oxide – 91% Transitional – 91% Fresh – 90% 		
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	he area is not located in an environmentally sensitive area so there is no reason to believe that environmental approvals vould materially restrict development of the project.		
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 Bulk density determinations were derived from measurements (immersion method) on core samples Densities were applied based on weathering profile and whether in ore/waste. Bulk density values used in the resource for ore were oxide = 1.74 t/m³, transitional=2.5 t/m³ and fresh 2.78 t/m³. Waste densities were 1.74 t/m³ (oxide), 2.50 t/m³ (trans), 3.0 t/m³ (fresh Basalt) and 2.7 t/m³ (fresh Felsite). It is assumed there are minimal void spaces in the rocks within the Callion deposit. Values in the Callion block model are similar to other known bulk densities from similar geological terrains. 		
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 Mineral Resources were classified in accordance with the Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC, 2012). In order to avoid a mosaic style of classification, solid wireframes were constructed to encompass areas considered to adequately fulfil the requirement to be classified as either indicated or inferred. Determining classification involved consideration of multiple factors including confidence in the geological model, continuity of mineralized zones, drillhole spacing, confidence in the underlying drillhole database, availability of bulk density information plus information and knowledge from previous mining. In part, the lodes have been drilled down to 10m x 10m spacing, and even areas of 5m by 5m grade control, on northing and easting, with drill lines running approximately ENE-WSW. Previous open pit and underground mining knowledge adds significantly to the confidence of the classification, albeit minor uncertainty on known 		

Criteria	JORC Code explanation	Commentary
		 underground voids. With all these factors considered, the resource estimate has in part been assigned to Indicated resources with the remainder to the Inferred category. No Measured resources have been assigned. The input data is comprehensive and of sufficient quality for use in the MRE. Significant recent drilling, covering the entire deposit, has confirmed the location and tenor of many historic drill-holes. Assay QAQC is of sufficient quality for the assays to be used in the MRE. There is sufficient understanding of the geology to support the current interpretation in terms of continuity. The Mineral Resource estimate appropriately reflects the view of the Competent Person.
Audits or reviews	• The results of any audits or reviews of Mineral Resource estimates.	The reported Mineral Resource Estimate has not been reviewed.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 The Callion Mineral Resource estimate is considered to be reported with a reasonable degree of confidence. The data quality is good and the drill holes from recent drilling have detailed logs produced by qualified geologists. The Mineral Resource statement relates to global estimates of tonnes and grade. Confidence in the estimate allows reasonable quantification of global metal content. However at a local scale there are risks associated with the estimation. The interpretation is considered globally robust but at a local scale, variations to ore geometry can be expected.

Section 3 Estimation and Reporting of Mineral Resources – Golden Eagle

Criteria	JORC Code explanation	Commentary	
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Data from SWAN/EGL/OBM drilling captured into Field Marshal or Geobank Mobile logging software. Data sent from site and imported into SQL database via DBMS. Validation checks in SQL database are carried out to ensure data integrity is not compromised. The data is verified by company geologists before being sent to the DBA for validation or passing Geobank Software validation protocols Historic data has been verified by checking historical reports on the project. The Competent Person has undertaken a number of validation checks on the database, using Micromine software which include, but are not limited to, checks for overlapping intervals, checks for missing data/records, visual checks on drill hole 	

Criteria	JORC Code explanation	Commentary		
		locations and traces to identify any possible survey issues. No major issues were detected.		
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 Site visits have been completed by the Competent Person with the following objectives: View geology in existing open pit and underground View drilling operations View and log drill core 		
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 Mineralised shear at Golden Eagle strikes NNW from 330° to 355° and are steeply west dipping. Late stage E-W structures have been mapped and may offset the mineralised lodes dextrally. There is a high level of confidence in the interpretation, mostly gained from recent observations during underground mining. Geology model well defined from open pit and underground mining Geology data including logged biotite, quartz sulphides and structure from OBM and historic drilling was used to guide the orientation and interpretation of mineralised lodes. There are no alternative geology interpretations. Geological continuity of mineralised shear is well defined. The main lode at Golden Eagle is geologically continuous over 0.8 km and is not closed off to the north. Grade continuity is well defined at a cut-off grade of 0.5g/t. 		
Dimensions	• The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	 The main lodes at Golden Eagle are geologically continuous over 0.8 km in an approx. N-S direction and defined to a depth of 250m below surface. 		
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. 	 Im composite samples coded to the mineralised domains used as inputs to estimation. Underground face samples and RC & diamond drilling samples used for estimation. Ordinary Kriging (OK) was used to estimate gold grades into a 3-dimensional block model. Estimation parameters derived from modelled semi-variograms. Datamine software was used for the estimation. High grade cuts up to 25 g/t were applied to 1m composite data based on analysis of individual domains. The parent block dimensions used were 2mE by 10mN by 10mRL with sub-cells of 0.5m by 0.625m by 0.625m. Drill hole spacing is approximately 25m between section and 20m along section. The parent block size selected is approx. 50% of data spacing An orientated ellipsoid search was used to select data and was based on parameters derived from the variography. Estimation completed in 3 runs each with less restrictive search, and minimum sample parameters. The initial interpolation pass used search ranges of 75% of the variogram ranges. Maximum number of samples was 10, minimum was 6. No estimation of deleterious elements was carried out. Deleterious elements have not been recorded during mining of Golden Eagle. Only Au was interpolated into the block model. Previous resource estimates have been completed in 2004 Previous resource estimates have been completed in 2004 Production records are not available to make comparisons. No assumptions have been made regarding recovery of by-products. Silver has not been routinely assayed. Selective mining units were not modelled in the Mineral Resource Only Au was estimated so correlation analysis was not possible The deposit mineralisation was constrained by wireframes constructed using a 0.5 g/t Au cut-off grade in association with logged geology, particularly the presence of quartz veining and biotite-sulphide alteration. The wireframes were		

Criteria	JORC Code explanation	Commentary		
	• The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	 Statistical comparison of estimated grades and composite grades on a domain by domain basis. Trend analysis of estimated block model grades versus composite grades on 10m northing and 5m vertical intervals. 		
Moisture	• Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	• Tonnages and grades were estimated on a dry in situ basis. No moisture values were reviewed.		
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	 The Mineral Resource has been reported at a 2.0 g/t Au cut-off based on assumptions about economic cut-off grades for underground open stoping. 		
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	 It is intended to continue underground mining at Golden Eagle. The underground cut-off was based on a mining cost of \$140 per tonne of ore, a dilution of 15% and mining recovery of 95% With the exception of the underground cut-off, no other modifying factors were applied to the underground portion of the Mineral Resource. 		
Metallurgical factors or assumptions	 The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made. 	 Golden Eagle has no known reported metallurgical issues and has been previously mined. Results from previous processing (using the existing plant at Davyhurst) have demonstrated that good gold recovery can be expected from modern conventional CIL processing methods. 		
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	 The area is not located in an environmentally sensitive area so there is no reason to believe that environmental approvals would materially restrict development of the project. 		
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, 	 Bulk density determinations were derived from limited measurements (immersion method) Densities were applied based on weathering profile and whether in ore/waste. All mineralised lodes are in fresh rock. Bulk density values used in the resource were 2.8 t/m3, for all mineralised lodes. External to the mineralised lodes, densities 		

Criteria	JORC Code explanation	Commentary		
	 the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 varied from 2.25 t/m3 to 2.94 t/m3. Observation of core and underground exposures shows minimal, if any void spaces in the rocks within the Golden Eagle deposit. Values applied in the Golden Eagle block model are similar to other known bulk densities from similar geological terrains. 		
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in 	Mineral Resources were classified in accordance with the Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC, 2012). The classification takes account of confidence in the geological interpretation, sample density and assay QAQC. In order to avoid a mosaic style of classification, solid wireframes were constructed to encompass areas considered to adequately fulfil the requirement to be classified as either indicated or inferred:		
	continuity of geology and metal values, quality, quantity and distribution of the data).	Classification	Code	Parameters
	• Whether the result appropriately reflects the Competent			Moderate confidence in volume and grade as defined by:
	Person's view of the deposit.	Indicated	2	Drill spacing of at least 25m Y and 20m X
				Estimation of grade predominantly during run 1 and run 2 where the average sample distance is no gro than 25m
				Lower confidence in volume and grade as defined by:
		Inferred	3	Drill spacing greater than 25m Y and 20m X
				Estimation of grade predominantly during run 2 where the average sample distance is greater than 25 and during run 3 where the average sample distance was no greater than 30m
		Unclassified	4	Estimation of grade predominantly during run 3 where the average sample distance is greater than 30
		Unclassified	4	Any ore lodes not likely to be mined due to location in relation to main lode.
		 The input data is comprehensive and of sufficient quality for use in the MRE. Significant recent drilling, covering the entire deposit, has confirmed the location and tenor of many historic drill-holes. Assay QAQC is of sufficient quality for the assays to be used in the MRE. There is sufficient understanding of the geology to support the current interpretation in terms of continuity. The Mineral Resource estimate appropriately reflects the view of the Competent Person. 		
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	The MRE is curi	rently be	ing reviewed by personnel from CSA Global.
Discussion of relative accuracy/ confidence	• Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.	 The Golden Eagle Mineral Resource estimate is considered to be reported with a reasonable degree of confidence. The data quality is good and the drill holes from recent drilling have detailed logs produced by qualified geologists. Historic logging has been reviewed. Observation from recent underground mining have confirmed the geological interpretation. The Mineral Resource statement relates to global estimates of tonnes and grade. Confidence in the estimate allows reasonable quantification of global metal content. However, at a local scale there are risks associated with the estimation. The interpretation is considered globally robust but at a local scale, variations to ore geometry can be expected. The deposit is not currently being mined. 		

Criteria	JORC Code explanation	Commentary
	 The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	

Section 4 Estimation and Reporting of Ore Reserves

Criteria	JORC Code explanation	Commentary		
Mineral Resource estimate for conversion to Ore Reserves	 Description of the Mineral Resource estimate used as a basis for the conversion to an Ore Reserve. Clear statement as to whether the Mineral Resources are reported additional to, or inclusive of, the Ore Reserves. 	 All Mineral Resources were completed by Ora Band Mining (OBM) using Ordinary Krigging and formed the basis for re-estimation of the Ore Reserve. Mineral Resources are reported inclusive of the insitu Ore Reserves. The total Ore Reserve includes an estimated 610,000 t at 1.0 g/t of economic material in surface stockpiles. 		
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 The site was initially visited by Mr Geoff Davidson on May 20th, 2020 and on several occasions subsequently. Mr Davidson is the Competent Person for this Ore Reserve estimate. During the site visit representative diamond drill core for each of the deposits was inspected for areas within the proposed mining envelopes. In addition, visits were made to each of the proposed mining locations and inspections were made of the existing plant site and associated infrastructure at Davyhurst. Mr Davidson is satisfied the conditions allowed for in this Ore Reserve estimate is consistent with the observations made during the site visit. No site visit to the Iguana project has been undertaken at this time; however, the Competent Person is satisfied that the operating environment is well understood through discussion with OBM personnel and third party consultants. The Competent person is satisfied the parameters and modifying factors used to determine this Ore Reserve are appropriate. 		
Study status	 The type and level of study undertaken to enable Mineral Resources to be converted to Ore Reserves. The Code requires that a study to at least Pre- Feasibility Study level has been undertaken to convert Mineral Resources to Ore Reserves. Such studies will have been carried out and will have determined a mine plan that is technically achievable and economically viable, and that material Modifying Factors have been considered. 	 This Ore Reserve estimate is an update for the Davyhurst operation; the mining costs used to determine the economic mining envelopes and convert Mineral Resources into Ore Reserves are based on mining costs specific to the locations considered. The evaluation of the Ore Reserves is considered to be at a pre- feasibility level of confidence or better. Tecnically achievable mine plans were developed for each mining location and determined to be ecnonmically viable following the application of appropriate Modifying Factors and practical mining programs. The costs and parameters used are based on existing realised costs and current or recent hard dollar contracts implemented for the project. 		
Cut-off parameters	 The basis of the cut-off grade(s) or quality parameters applied. 	 Cut-off grade parameters were determined using realised costs from existing or recent project specific hard dollar contracts, as well as realised internal costs for OBM labour, plant and equipment. Ore haulage costs are based on existing contracts in place. Processing costs are based on an assessment of realised costs to date and forward projections. Site general costs and administration overheads (G&A) are based on existing realised costs specific to the mining operations. Selling costs were based on standard State Royalties. Metallurgical process recoveries were based on metallurgical test work finalised from the DFS or subsequent 		

Criteria	JORC Code explanation	Commentary
		 test work and analysis. The global process recovery factor correlates with the year-to-date process recovery from the FY22 period. A maximum breakeven price of A\$ 1850 per ounce was used to determine the economic mining envelope and the reserves within each pit. The cut off grade allows for ore haulage, crusher loading, processing, site G&A and corporate overhead contributions. The total of these costs were estimated to range betwewn \$41 to \$49 per tonne depending on mining location. Processing recoveries vary between 85% and 96% depending on location and weathering classification. The project average recovery is estimated to be 92% and aligns with FY22 performance. Selling costs inclusive of smelter charges and state royalties were estimated to be \$60 per ounce of recovered gold. Third party royalties are not applicable. The incremental cut-off grades for the open pits range between 0.8 g/t and 1.0 g/t for the open pit, depending on location and weathering classification. The cut-off grade was applied to the diluted Mineral Resource
Mining factors or assumptions	 The method and assumptions used as reported in the Pre-Feasibility or Feasibility Study to convert the Mineral Resource to an Ore Reserve (i.e. either by application of appropriate factors by optimisation or by preliminary or detailed design). The choice, nature and appropriateness of the selected mining method(s) and other mining parameters including associated design issues such as pre-strip, access, etc. The assumptions made regarding geotechnical parameters (eg pit slopes, stope sizes, etc), grade control and pre-production drilling. The major assumptions made and Mineral Resource model used for pit and stope optimisation (if appropriate). The mining dilution factors used. Any minimum mining widths used. The manner in which Inferred Mineral Resources are utilised in mining studies and the sensitivity of the outcome to their inclusion. The infrastructure requirements of the selected mining methods. 	 Open Pit Mining Factors and Assumptions A combination of approved and preliminary mine designs were used as the basis for the Ore Reserve estimate. Preliminary designs were derived from economic envelopes determined using Whittle pit optimisation, based costs aforementioned costs and recoveries, as well as slope parameters determined from geotechnical assessment and modified for ramps and minimum mining withts. Approved mine designs were initially validated in whittle and subsequently in the financial model. The project average mining cost was estimated to be \$5.53 per tonne of material, depending on location and maturity of the operation. These costs include provisions for grade control, drill, blast, load, haul, rehab and OBM mine overheads. Conventional mining methods are used at DGP. Open cut operations are primarily planned around using 120 t-class excavators and 90 t dump trucks. All material mined, excluding existing in-pit backfill, historical waste dumps and on-pit tailings, allow for drilling and blasting. The mining method is appropriate for the style an nature of the mineralisation. Minimum mining widths of 20 m were allowed on all wall cutbacks adjacent to existing open pit workings. The mining methods proposed are well-known and widely used in the local mining industry, and productivity rates and costs can be predicted with an appropriate degree of accuracy. Suitable access exists to the mine. The mining method contemplates selectively separating waste from the ore to minimise dilution and ore loss. Ore faces will be exposed by removing waste to the identified contact prior to removing the ore. Independent consultants prepared a geotechnical analysis to an appropriate level of detail. This forms the basis of pit wall design criteria. The geotechnical assessment of Iguan is preliminary at this time and is based on existing exposures within old workings and observerd behavour of lithologies in the

Criteria	JORC Code explanation	Commentary		
		 typically in the range 59% at Riverina, 30 estimated to be 47%. Open pit mining reco within the pit design. Practical mine designs wer validation of the Ore Reservalidation of the Ore	of 0.2 to 0.4 g/t. Avere 0% at Waihi, 59% at C very was based on a non e completed for each of ve. The strip ratio for eac Strip Ratio (W/O)	nd grades vary depending on alteration halo around the lodes but eage dilution factors are 41% at Sand King, 65% at Missouri, Callion and 42% at Iguana . The global average dilution was minal 5% ore loss applied to blocks above the economic cut off f the projects and formed the basis of scheduling and economic ach of the pits is given in the table below.
		Sand King	9.5	
		Missouri	9.6	
		Riverina Waihi	4.0 6.6	
		Callion	21	
		Iguana	6.8	
		iguunu	0.0	1
		Infrastructure		
		including a processing borefields and coreya establish similar to se • Infrastructure will be	g plant and associated in irds. An accommodation rvice the Siberia operat required for the establi	perations is already established at the Davyhurst Project, nfrastructure, camp, airstrip, offices, power reticulation, n camp has been constructed at the Riverina and plans to cions (Sand King and Missouri) are under review. Ishment of the Iguana operations and prelimary capital cost ate as part of the financial evaluation.
Metallurgical factors or assumptions	 The metallurgical process proposed and the appropriateness of that process to the style of mineralisation. Whether the metallurgical process is well-tested technology or novel in nature. The nature, amount and representativeness of metallurgical test work undertaken, the nature of the metallurgical domaining applied and the corresponding metallurgical recovery factors applied. Any assumptions or allowances made for deleterious elements. The existence of any bulk sample or pilot scale test work and the degree to which such samples are considered representative of the orebody as a whole. For minerals that are defined by a specification, has the ore reserve estimation been based on the appropriate mineralogy to meet the specifications? 	 gold processing flows Metallurgical test wo recoveries align well estimated to be 92%. 	heet used throughout t rk was carried out on ea with the actual perform The process plant has a	CIL with some gold recovered via gravity circuit. This is a standard the industry for this style of mineralisation. ach of the projects, including Iguana, and estimated global nance of the process plant. The global average recvory was a nominal throughput rate of 1.2 Mtpa based on a grind size of d further operational improvements are proposed.

Criteria	JORC Code explanation	Commentary
Environmental	The status of studies of potential environmental impacts of the mining and processing operation. Details of waste rock characterisation and the consideration of potential sites, status of design options considered and, where applicable, the status of approvals for process residue storage and waste dumps should be reported.	 General (exc Iguana) All flora and fauna baseline studies have been completed for areas that may potentially be influenced by mining operations contemplated in this Ore Reserve estimate. No conservation significant taxa were identified as being at risk. Searches of Indigenous and European State Heritage Registers have not identified any sites that require active management. Potential environmental impacts will be risk managed as part of the DMIRS Mining . Both historical and recent geochemical data indicate waste rock mass is non-acid forming. Tailings from ore processing will be stored within the existing Tailings Storage Facility (TSF). Allowance has been made for expansions to this facility as required by the mine plan. Iguana Baseline permitting is well advanced for the project: Waste rock characterisation is underway Surface hydrology study is well advanced Flora & Fauna studies are well advanced Three Priority 1 species have been identified during targeted surveys with appropriate management plans being drafted. Heritage survey complete (no issues presented) Iguana is a Brownfields site, previously permitted and operated by Delta Gold The Competent Person is not aware of any reason why permitting will not continue to be granted within a reasonable time frame.
Infrastructure	• The existence of appropriate infrastructure: availability of land for plant development, power, water, transportation (particularly for bulk commodities), labour, accommodation; or the ease with which the infrastructure can be provided, or accessed.	 The majority of required infrastructure is established and commissioned. Small temporary satellite facilities for Callion and Waihi will be required. Iguana will require the construction of haul road as well as conventional medium term temporary facilities. Preliminary provisions were maded within the fancial analsys for these facilities. An accommodation camp has been constructed at Riverina and a similar camp is propsosed for Siberia (Sand King / Missouri) is under review. Communication are established at all operating locations. The operation is currently serviced by the airstrip at Callion.
Costs	 The derivation of, or assumptions made, regarding projected capital costs in the study. The methodology used to estimate operating costs. Allowances made for the content of deleterious elements. The source of exchange rates used in the study. Derivation of transportation charges. The basis for forecasting or source of treatment and refining charges, penalties for failure to meet specification, etc. The allowances made for royalties payable, both Government and private. 	 Initial capital has been fully expensed. Sustaining capital was allowed for in the financial analysis . Mining and ore haulage costs were estimated from existing hard dollar contracts for the project. Power, diesel and accommodation costs were based on current realised costs. Staff costs were based on current employment contracts in place. Processing operating costs were based on current performance. Mining operations specific overhead costs were included based on costs budget for FY23. No deleterious elements have been identified or are expected. Geochemical characterisation testwork programs at Iguana are ongoing at this time. All costs were quoted and compiled in Australian dollars. The standard WA state government royalty was allowed for. No third party royalties are applicable.

Criteria	JORC Code explanation	Commentary
Revenue factors	 The derivation of, or assumptions made regarding revenue factors including head grade, metal or commodity price(s) exchange rates, transportation and treatment charges, penalties, net smelter returns, etc. The derivation of assumptions made of metal or commodity price(s), for the principal metals, minerals and co-products. 	 Revenue calculations were based on detailed mine plans and mining factors including provision for dilution and ore loss. The metal price used for revenue calculation was A\$2,400/oz before selling costs and is below the current spot price of around A\$2,500 as of the date of this announcement. The price used is considered by Ora Banda Mining to be a conservative estimate of the medium-term gold price.
Market assessment	 The demand, supply and stock situation for the particular commodity, consumption trends and factors likely to affect supply and demand into the future. A customer and competitor analysis along with the identification of likely market windows for the product. Price and volume forecasts and the basis for these forecasts. For industrial minerals the customer specification, testing and acceptance requirements prior to a supply contract. 	 There are no known major gold producers expecting to influence the global supply of gold over the period of the project. Demand for gold is expected to be subject to usual global factors and global recovery from the Covid-19 pandemic.
Economic	 The inputs to the economic analysis to produce the net present value (NPV) in the study, the source and confidence of these economic inputs including estimated inflation, discount rate, etc. NPV ranges and sensitivity to variations in the significant assumptions and inputs. 	 The Ore Reserve estimate is based on a financial model that has been prepared to pre-feasibility level of accuracy for the purpose of project evaluation and is based on realised costs to date. All inputs from open pit operations, processing, transportation and sustaining capital as well as contingencies have been scheduled and evaluated to generate a life of mine financial model. Economic inputs have been sourced from operational budgets, contractors and DGP accounts for internal costs. A discount rate of 6%pa has been applied. The NPV of the project is positive at the assumed commodity price. The Competent Person is satisfied that the project economics based on mining the Ore Reserve retains a suitable margin of profitability.
Social	The status of agreements with key stakeholders and matters leading to social licence to operate.	To the best of the Competent Persons knowledge all agreements are in place and current with all key stakeholders including traditional owner claimants.
Other	 To the extent relevant, the impact of the following on the project and/or on the estimation and classification of the Ore Reserves: Any identified material naturally occurring risks. The status of material legal agreements and marketing arrangements. The status of governmental agreements and approvals critical to the viability of the project, such as mineral tenement status, and government and statutory approvals. There must be reasonable grounds to expect that all necessary Government approvals will be received within the timeframes anticipated in the Pre-Feasibility or Feasibility study. Highlight and discuss the materiality of any 	 A formal process to assess and mitigate naturally occurring risks will be undertaken prior to execution of each location. Currently, all naturally occurring risks are assumed to have adequate prospects for control and mitigation. All proposed mining operations are contained within granted mining leases 100% owned by Ora Banda Mining. All approvals are in place for Riverina, Missouri and Sand King. Both Missouri and Riverina have been operated by OBM. Missouri is still a producing mine. Phased development of pits such as Iguana, Callion and Waihi will require specific approvals. Based on the information provided, the Competent Person is unaware of any reason why these approvals will not be successfully granted within the anticipated timeframe. Environmental management plans are still to be approved by the regulators; however thiere is no know impediment to these being accepted. The Company (and its wholly owned subsidiaries) is a party to various proceedings in the Wardens Court pursuant to which third parties are seeking to challenge its title to various mining tenements by way of forfeiture and other proceedings. The directors are confident that the Company (and its wholly owned

Criteria	JORC Code explanation	Commentary
	unresolved matter that is dependent on a third party on which extraction of the reserve is contingent.	subsidiaries) will be successful in defending these proceedings. There were no proceedings against any subsidiary that could bring into doubt whether the Company controlled any of its subsidiaries within the Group.
Classification	 The basis for the classification of the Ore Reserves into varying confidence categories. Whether the result appropriately reflects the Competent Person's view of the deposit. The proportion of Probable Ore Reserves that have been derived from Measured Mineral Resources (if any). 	 The Probable Ore Reserves are based on that portion of the Measured and Indicated Mineral Resource respectively within the mine design that may be economically extracted and includes an allowance for dilution and ore loss. The result appropriately reflects the Competent Person's view of the deposit. The Ore Reserve is inclusive of surface stockpiles above the relevant incremental cut-off and total 610,000 t at 1.0 g/t. All surface stockpiles were classified as Proved.
Audits or reviews	• The results of any audits or reviews of Ore Reserve estimates.	• The Ore Reserve estimate, along with the mine design and life of mine plan, has been peer-reviewed internally by Ora Banda Mining Pty Ltd and associated independent consultants.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Ore Reserve estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the reserve within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors which could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. Accuracy and confidence discussions should extend to specific discussions of any applied Modifying Factors that may have a material impact on Ore Reserve viability, or for which there are remaining areas of uncertainty at the current study stage. It is recognised that this may not be possible or appropriate in all circumstances. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 The design, schedule and financial model on which the Ore Reserve is based was completed to a prefeasibility level of accuracy for project evaluation purposes. Costs were taken from existing contracts and internal realised costs reported from OBM accounts. Where actual data did not exist due to phasing of certain pits (e.g. Sand King, Waihi, Callion and Iguana) data was taken from existing or recently operating locations (eg. Missour and Riverina). The Ore Reserve is based on a global estimate. There is a degree of uncertainty associated with geological estimates. The Reserve classifications reflect the levels of geological confidence in the estimates. There is a degree of uncertainty regarding estimates of impacts of natural phenomena including geotechnical assumptions, hydrological assumptions and the modifying mining factors, commensurate with the current status of the project. The Competent Person is satisfied that the analysis used to generate the modifying factors is appropriate, and that a suitable margin exists under current market conditions to allow for the Reserve estimate to remain economically viable despite reasonably foreseeable negative modifying factor results. There is a degree of uncertainty regarding estimates of commodity prices and exchange rates, however the Competent Person is satisfied that the assumptions used to determine the economic viability of the Ore Reserves are reasonable based on current and historical data. Where applicable parameters and modifying factors used were calibrated against actual operational data and reconcilitions.